какая длина волны wifi

Как сигналы Wi-Fi проходят сквозь стены?

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Сигналы Wi-Fi проходят сквозь стены.

Сигналы Wi-Fi представляют собой тип электромагнитного излучения, очень похожего на видимый свет. Электромагнитные волны с длиной волны в диапазоне сигналов Wi-Fi проходят сквозь стены так же легко, как свет проходит через стеклянные окна.

Одной из самых распространенных проблем современного мира является отсутствие доступа к WiFi, особенно когда он вам нужен больше всего!

Однако, есть некоторые вещи в технологиях Wi-Fi, которые, если бы вы упомянули о них несколько десятилетий назад, заставили бы людей думать, что вы потеряли свои шарики. Например, само существование технологии, которая позволяет передавать потоковое видео и подключаться к остальному миру по беспроводной связи, поразило бы всех.

Кроме того, сигналы Wi-Fi достигают вашего устройства, даже если маршрутизатор Wi-Fi находится далеко от вас. Например, вы можете просматривать Интернет с помощью Wi-Fi, даже если маршрутизатор Wi-Fi находится в другой комнате с одной или несколькими стенами/дверями между вашим телефоном и маршрутизатором.

Разве не странно, что свет не может проходить сквозь стены, но сигналы Wi-Fi могут? Как это происходит?

Электромагнитное излучение и Wi-Fi

Взгляните на следующую картинку:

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Обратите внимание, как видимый свет является такой маленькой частью электромагнитного спектра?

Как вы можете видеть на изображении выше, существует 6 основных типов электромагнитного излучения (7, если считать видимый свет отдельно).

Радиоволны являются одним из типов, и WiFi работает на этих радиоволнах.

Поэтому 5 ГГц используется для передачи больших объемов данных через WiFi сигналы между устройствами.

Как сигналы Wi-Fi проходят сквозь стены

Когда электромагнитная волна (в данном случае сигналы Wi-Fi) ударяется о поверхность, она может выполнять одно из следующих трех действий:

1 – проход насквозь (преломление)

2 – получить отражение (отражение)

3 – получить поглощение (поглощение)

Когда объект отражает определенную длину волны видимого света, цвет, связанный с этой длиной волны, становится цветом объекта. Яблоко красное, потому что, когда свет падает на его поверхность, длина волны света, которую оно отражает больше всего, связана с красным цветом.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Как вы думаете, почему яблоко не фиолетовое, розовое или голубое? Почему красный?

Теперь следующий логический вопрос: что заставляет объект поглощать, отражать или преломлять только определенную длину волны электромагнитного излучения?

Это полностью зависит от состава рассматриваемого объекта. Видите ли, все в этой вселенной состоит из крошечных строительных блоков, называемых атомами. Размер этих атомов и расстояние между ними (насколько близко или свободно они упакованы вместе внутри объекта) определяет, будет ли объект поглощать определенную длину волны электромагнитного излучения или пропускать его.

Возьмем, к примеру, видимый свет. Когда вы закрываете дверь своей спальни, свет снаружи не попадает в вашу спальню, не так ли? Почему не попадает?

Потому что видимый свет не может проникать сквозь твердые предметы, такие как стены или дверь вашей спальни. Однако, он может легко проходить сквозь некоторые другие твердые объекты, такие как стеклянные окна. Именно поэтому сигналы Wi-Fi могут проходить через стены и двери.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Обратите внимание на частотный диапазон WiFi.

Так же, как стеклянные окна прозрачны для видимого света, стены прозрачны для сигналов WiFi (другого вида электромагнитного излучения), потому что частота (или длина волны) излучения, связанного с сигналами WiFi, может проникать через твердые объекты, но только до определенной точки.

Если рассматриваемые стены слишком толстые, сигналы Wi-Fi не смогут проходить через них. Кроме того, когда сигналы Wi-Fi распространяются по воздуху, они ослабляются, что означает, что они теряют часть своей энергии.

Вот почему, если вы используете WiFi-роутер в комнате, окруженной толстыми бетонными стенами, вы не получите никакого сигнала WiFi за пределами комнаты. Точно так же у вас не будет хорошего приема Wi-Fi на вашем устройстве, если маршрутизатор находится на значительном расстоянии от вас (50-100 метров).

Проще говоря, стены так же прозрачны для сигналов Wi-Fi, как стеклянные окна для видимого света, поэтому сигналы Wi-Fi могут легко проходить через большинство стен и гарантировать, что вы всегда будете на связи!

Источник

Длина волны Wi-fi сигнала

WiFi – беспроводной способ связи, основанный на электромагнитном излучении. Сигнал WiFi относят к радиоволнам, соответственно, он имеет такие же свойства, характеристики и поведение. Радиоволны, в свою очередь, подчиняются практически тем же физическим законам, что и свет: распространяются в пространстве с такой же скоростью (почти 300 000 километров в секунду), подвержены дифракции, поглощению, затуханию, рассеиванию и прочим характеристикам.

Основные характеристики радиоволны, а значит и сигнала WiFi — это ее длина и частота или частотный диапазон. Последний параметр означает частоту переменного тока, необходимую для получения волны нужной длины и используется для классификации радиоволн. Другое определение частоты — это количество волн, проходящих через определенную точку пространства в секунду.

Беспроводная связь WiFi использует дециметровые и сантиметровые волны ультравысокой и сверхвысокой частоты (УВЧ и СВЧ) в частотных диапазонах 2,4 ГГц, 5 ГГц и других редко используемых: 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц.

Главное преимущество WiFi-связи отражено во втором ее названии – беспроводная связь. Именно отсутствие проводов вкупе со все возрастающей скоростью передачи данных является ключевым моментом при выборе этого способа соединения.

Связь частоты сигнала WiFi и длины волны

Характеристики длины волны сравнительно редко используются в параметрах оборудования WiFi. Однако иногда, для понимания физических свойств и поведения сигнала беспроводной связи в различных условиях неплохо разбираться в связи частоты и длины радиоволн. Общее правило: чем выше частота, тем короче длина волны. И наоборот.

Свойства WiFi сигнала

Главное условие для создания беспроводного линка на расстояние большее, чем сотня метров – прямая видимость между точками установки оборудования. Объекты, находящиеся в зоне видимости – отражают и поглощают сигнал WiFi, если не весь, то львиную его часть.

Процент ухудшения сигнала вай-фай при прохождении через препятствия зависит от нескольких факторов:

2. Огибание препятствий.

По-научному это поведение луча WiFi называется дифракцией, хотя на самом деле понятие дифракции гораздо сложнее, чем простое «огибание препятствий». В общем, можно вывести правило – чем короче длина волны (выше частота), тем хуже она огибает препятствия.

3. Естественное затухание. Как далеко мог бы передаваться сигнал WiFi, если создать ему идеальные условия прямой видимости? В любом случае не бесконечно, потому что чем больше дальность беспроводного «пролета», тем больше сигнал затухает сам по себе.

Происходит это по 2 причинам:

4. Отражения сигнала.

Сигнал WiFi, как любая радиоволна, как свет, отражается от поверхностей и ведет себя при этом аналогично. Но тут есть нюансы – какие-то поверхности будут поглощать сигнал (полностью или частично), а какие-то – отражать (полностью или частично). Это зависит от материала поверхности, его структуры, наличия неровностей на поверхности и частоты WiFi.

5. Плотность данных. Частота WiFi влияет также на еще один важный параметр – объем передаваемых данных. Здесь существует прямая связь – чем выше частота, тем больше данных в единицу времени можно передать.

Диапазоны и частоты WiFi

Как мы уже сказали, для WiFi связи выделено несколько разных частотных диапазонов: 900 МГц, 2,4 ГГц, 3,65 ГГц, 5 ГГц, 10 ГГц, 24 ГГц. Чаще всего применяются точки доступа WiFi и антенны WiFi 2,4 ГГц и 5ГГц.

Основные отличия 2,4 ГГц и 5ГГц:

Длина волны 12,5 см. Относится к дециметровым волнам ультравысокой частоты (УВЧ). В реальных условиях – меньшая дальность сигнала из-за более широкой зоны Френеля, что чаще всего не компенсируется тем, что сигнал на этой частоте меньше подвержен естественному затуханию. Лучшее преодоление небольших преград, например, густых лесных массивов, благодаря хорошей проникающей способности и огибанию препятствий. Меньше относительно неперекрывающихся каналов (всего 3), а значит, «пробки на дорогах» – теснота в эфире, и как результат – плохая связь. Дополнительная зашумленность эфира другими устройствами, работающими на этой же частоте, в том числе мобильных телефонов, микроволновок и т. п.

Длина волны 6 см. Относится к сантиметровым волнам сверхвысокой частоты (СВЧ). Большее количество относительно неперекрывающихся каналов (19). Большая емкость данных. Большая дальность сигнала, в связи с тем, что Зона Френеля меньше. Такие препятствия, как листва деревьев, стены волны диапазона 5ГГц преодолевают гораздо хуже, чем 2,4.

Диапазоны 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц для нас скорее экзотика, однако могут использоваться: для работы в условиях, когда стандартные диапазоны плотно заняты.

Если требуется создать беспроводное соединение между двумя точками при отсутствии прямой видимости (лес и другие препятствия). Это касается такой частоты, как 900 МГц (ее нужно использовать с осторожностью, так как на ней работают мобильные операторы). Если для использования частоты не требуется получать лицензию в контролирующих органах. Такое преимущество часто встречается в презентациях зарубежных производителей,

В IEEE ведутся разработки по принятию новых стандартов и, соответственно, использованию других частот для WiFi. Не исключено, к примеру, что в ближайшее время диапазон 60 ГГц также станет использоваться для беспроводной передачи. Точно также, как и возможна вероятность «отжатия» в будущем некоторых частот, сейчас принадлежащих WiFi, в пользу, например, сотовых операторов.

Источник

Основные частоты для работы Wi-Fi

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifiWi-Fi имеет разные каналы и диапазон частот

Что такое частота Wi-Fi сигнала

Каждый модем передает цифровые потоки информации от одной к другой точке или точкам. Сигнал представляется собой электрический импульс с 2 базовыми характеристиками — длина волны Wi-Fi и частота. Так как беспроводные технологии относятся к категории радиоволн, то работают по схожим законам, что и свет.

Частоты Wi-Fi — это число периодов переменного тока за сек., иначе — количество волн, идущих в определенном месте пространства. Частота напряжения определяет общую длину радиоволны.

Итак, на каких частотах работает Wi-Fi:

Встречаются другие диапазоны — 0,9, 3,6, 10, 24 GHz. Они применяются редко, когда обычные частоты заняты, и лишь в случае, если на них у пользователя имеется лицензия. Каждая частота имеет индивидуальные свойства. И даже слабый сигнал может проходить огромные расстояния, однако в такой ситуации потребуется специальная антенна или Wi-Fi пушка для усиления импульса.

Чтобы осуществлять связь по беспроводной технологии необходимо иметь точку для доступа (оборудование) и как минимум 1-2 клиентов Wi-Fi. Иногда происходит подключение по типу точка-точка, то есть пользователи связываются напрямую. При этом стандарт предусматривает значительную степень свободы в выборе настроек адаптера и радиоканала.

На что влияет частота, какие разрешены в России

Частота сетевого сигнала непосредственно влияет на длину волны и другие характеристики:

Таким образом, главное, что определят ширина канала — это качество и скорость работы в сети Internet.

Важно! В РФ разрешено (не нужна лицензия) использовать в домах частоту и 2,4, и 5 GHz.

Как узнать, на какой частоте работает вай-фай роутер

Перед тем, как вносить коррективы в работу модема, необходимо просмотреть текущие настройки. Как узнать частоту Wi-Fi роутера через настройки:

Также диапазон можно найти посредством утилиты WiFiInfoView. С помощью нее можно не только определить частоту, но и изменить настройки:

Какая лучше, как поменять в настройках

Практически все установки адаптера производятся в веб-интерфейсе. Разные маршрутизаторы могут иметь отличия в инструкции по смене настроек. Приводится пример работы с TP-Link:

2,4 или 5 ГГц

Плюсы частоты 2.4 ГГц:

Вывод: каждая частота имеет преимущества и ограничения в зависимости от местных условий и индивидуальных задач. Пользователи, проживающие в обычных квартирах, могут иметь скоростное подключение и при 2,4 GHz, если сеть не слишком перегружена. Когда нужно транслировать сигнал на значительные расстояния или снизить серьезные помехи, то в приоритете оказывается 5 GHz.

Важно! Старые модели роутеров могут не поддерживать переход на 5 ГГц. Обычно маркировка указана на корпусе прибора.

Выбор между 20 и 40 мгц

В рамках частоты в 2,4 ГГц можно также варьировать пропускную способность: 20 или 40 МГц. На первый взгляд большая ширина является предпочтительной, однако стоит изучить подробнее их характеристику:

Следовательно, показатель 40 МГц хорошо пропускает импульс, но негативно влияет на качество соседних подключений, то есть риск конфликта выше, если полоса становится шире. И с практической стороны рекомендуется:

Главный совет — поэкспериментировать самостоятельно. Можно на какой-то временной промежуток установить одну частоту или ширину, затем изменить. Если пользователь не понимает различий в этих параметрах, стоит поставить в модеме функцию автоопределения частот. Тогда роутер сможет подбирать наиболее выгодную пропускную способность без вмешательства человека.

Примечание! Для телефонов и планшетов необходимо приобретать программы Wi-Fi Analyzer, через которые возможно изменять каналы. Рекомендуемые номера — 1, 6, 11 или другие свободные и непересекающиеся.

Контроль скорости интернета

После изменения частоты работы модема имеет смысл проверить реальную скорость передачи данных по Wi-Fi. Например, можно выбрать следующий способ:

Проверка скорости подключения на смартфоне возможна через дополнительное приложение типа speedtest.net.

Интересно! В непогоду частым явлением становится снижение сетевого сигнала.

Полосы частот Wi-Fi — это раздел более глубоких установок Internet. Чтобы иметь возможность открывать сайты и переходить по веб-ссылкам, разбираться в данных параметрах необязательно. Однако, эти знания пригодятся, если с интернетом возникнут неполадки или пользователь захочет провести более тонкую настройку системы.

Источник

Что такое WiFi? Подробно о свойствах WiFi сигнала

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi
на картинке: графическое отображение WiFi волн в городе.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

ОНЧ ( VLF)Мириаметровые. Очень низкие3—30 кГц100–10 кмНЧ (LF)Километровые. Низкие.30—300 кГц10–1 кмСЧ (MF)Гектометровые. Средние.300—3000 кГц1–0.1 кмВЧ (HF)Декаметровые. Высокие.3—30 МГц100–10 мОВЧ ( VHF)Метровые. Очень высокие.30—300 МГц10–1 мУВЧ ( UHF)Дециметровые. Ультравысокие.300—3000 МГц1–0.1 мСВЧ ( SHF)Сантиметровые. Сверхвысокие.3—30 ГГц10–1 смКВЧ (EHF)Миллиметровые. Крайне высокие.30—300 ГГц10–1 ммTHFДециметровые. Гипервысокие.300—3000 ГГц1–0.1 мм

Сфера применения радиоволн зависит от частотного диапазона. Это может быть телевидение, радиосвязь, мобильная связь, радиорелейная связь и т. д. Вообще, радиочастотный эфир занят довольно плотно: использование всех диапазонов буквально расписано:

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Связь частоты сигнала WiFi и длины волны

Характеристики длины волны сравнительно редко используются в параметрах оборудования WiFi. Однако иногда, для понимания физических свойств и поведения сигнала беспроводной связи в различных условиях неплохо разбираться в связи частоты и длины радиоволн.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifiОбщее правило: Чем выше частота, тем короче длина волны. И наоборот.

Формула для расчета длины волны:

Длина волны WiFi сигнала (в метрах) = Скорость света (в м/сек) / Частота сигнала (в герцах).

Скорость света в м/сек = 300 000 000.

После упрощения формулы получаем: Длина волны в метрах = 300/ Частота в МГц.

Свойства WiFi сигнала

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifiПоглощение.

То же самое происходит и в помещении, где сигнал от WiFi роутера или точки доступа проходит через стены в другие комнаты/на другие этажи. Каждая стена или перекрытие «отбирает» у сигнала некоторое количество эффективности.

На небольшом расстоянии, например, от комнатного роутера до ноута, у радиосигнала еще есть шансы, преодолев стену, все-таки добраться до цели. А вот на длинной дистанции в несколько километров любое такое ослабление существенно сказывается на качестве и дальности WiFi связи.

Процент ухудшения сигнала вай-фай при прохождении через препятствия зависит от нескольких факторов:

Дополнительные потери при прохождении (dB)

Процент эффективного расстояния*, %

Нетонированное окно (отсутствует металлизированное покрытие)

Окно с металлизированным покрытием (тонировкой)

Стена 15,2 см (межкомнатная)

Стена 30,5 см (несущая)

Бетонный пол или потолок

Цельное железобетонное перекрытие

* Процент эффективного расстояния — эта величина означает, какой процент от первоначально рассчитанной дальности (на открытой местности) сможет пройти сигнал после преодоления препятствия.

Именно поэтому во время дождя и других «влажных» атмосферных осадков наблюдается небольшое снижение качества беспроводного соединения, поскольку капли воды в атмосфере поглощают сигнал.

Частично этот фактор влияет и на затухание WiFi передачи в листве деревьев, т. к. они содержат большой процент воды.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifiОгибание препятствий.

По-научному это поведение луча WiFi называется дифракцией, хотя на самом деле понятие дифракции гораздо сложнее, чем простое «огибание препятствий».

Основывается это правило на известном физическом свойстве волны: если размер препятствия меньше, чем длина волны, то она его огибает. В целом отсюда логично проистекает, что чем короче длина волны, тем меньшее остается вариантов препятствий, которые она может в принципе обойти, и поэтому принимается, что ее огибающая способность хуже.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Возьмем популярные частоты 2,4 ГГц (длина волны 12,5 см) и 5 ГГц (длина волны 6 см). Мы видим подтверждение правила на примере прохождения лесного массива. Стандартные размеры листьев, стволов, веток деревьев, в среднем будут меньше, чем 12,5 см, но больше, чем 6 см. Поэтому сигнал WiFi 5 ГГц диапазона при прохождении через густую листву “потеряется” практически полностью, в то время как 2,4 ГГц справится лучше.

Также именно поэтому для нормальной работы беспроводного оборудования, использующего частоту 24ГГц (длина волны 1,25 см) необходима абсолютно чистая видимость, потому что все препятствия больше сантиметра будут отражать и поглощать сигнал.

Как мы уже упоминали, в отношении прохождении сигнала через лесной массив играет роль также содержание воды в листьях, а также длина волны.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi Естественное затухание.

Как далеко мог бы передаваться сигнал WiFi, если создать ему идеальные условия прямой видимости? В любом случае не бесконечно, потому что чем больше дальность беспроводного “пролета”, тем больше сигнал затухает сам по себе. Происходит это по 2 причинам:

Земная поверхность поглощает часть энергии сигнала. Чем выше частота WiFi, тем интенсивнее идет поглощение.

Сигнал WiFi даже из самой узконаправленной антенны распространяется не прямой линией, а лучом. Соответственно, чем дальше расстояние, тем шире становится луч, тем меньшая мощность сигнала приходится на единицу площади, и тем меньше энергии сигнала попадает в принимающую антенну.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi Отражения сигнала.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Интерференция может иметь и положительное влияние, если волны WiFi накладываются друг на друга в одинаковых фазах. Это часто используется для усиления мощности сигнала.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi Плотность данных.

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi Почему сложно дать однозначный ответ: на какое расстояние будет передавать сигнал WiFi оборудование?

Физические свойства и поведение радиоволны в окружающем мире довольно сложны. Нельзя взять какой-то один параметр и по нему рассчитать дальность беспроводного сигнала. В каждом конкретном случае на дальность будут оказывать влияние различные факторы окружающей среды:

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi

Диапазоны и частоты WiFi

Как мы уже сказали, для WiFi связи выделено несколько разных частотных диапазонов: 900 МГц, 2,4 ГГц, 3,65 ГГц, 5 ГГц, 10 ГГц, 24 ГГц.

В Украине на данный момент чаще всего применяются точки доступа WiFi и антенны WiFi 2,4 ГГц и 5ГГц.

Основные отличия 2,4 ГГц и 5ГГц:

какая длина волны wifi. Смотреть фото какая длина волны wifi. Смотреть картинку какая длина волны wifi. Картинка про какая длина волны wifi. Фото какая длина волны wifi2,4 ГГц. Длина волны 12,5 см. Относится к дециметровым волнам ультравысокой частоты (УВЧ).

Диапазоны 900 МГц, 3,6 ГГц, 10 ГГц, 24 ГГц для нас скорее экзотика, однако могут использоваться:

Для работы в условиях, когда стандартные диапазоны плотно заняты.

Если требуется создать беспроводное соединение между двумя точками при отсутствии прямой видимости (лес и другие препятствия). Это касается такой частоты, как 900 МГц (в нашей стране ее нужно использовать с осторожностью, так как на ней работают сотовые операторы).

Если для использования частоты не требуется получать лицензию в контролирующих органах. Такое преимущество часто встречается в презентациях зарубежных производителей, однако для Украины это не совсем актуально, так как условия лицензирования в нашей стране другие.

В IEEE ведутся разработки по принятию новых стандартов и, соответственно, использованию других частот для WiFi. Не исключено, к примеру, что в ближайшее время диапазон 60 ГГц также станет использоваться для беспроводной передачи. Точно также, как и возможна вероятность “отжатия” в будущем некоторых частот, сейчас принадлежащих WiFi, в пользу, например, сотовых операторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *