какая единица служит для измерения количества теплоты
Единицы теплоты
“…- Сколько попугаев в тебе поместится, такой у тебя рост.
– Очень надо! Я не стану глотать столько попугаев!…”
В соответствии с международными правилами СИ (международная система единиц измерения) количество тепловой энергии или количество тепла измеряется в Джоулях [Дж], также существуют кратные единицы килоДжоуль [кДж] = 1000 Дж., МегаДжоуль [МДж] = 1 000 000 Дж, ГигаДжоуль [ГДж] = 1 000 000 000 Дж. и пр. Эта единица измерения тепловой энергии является основной международной единицей и наиболее часто используется при проведении научных и научно-технических расчётов.
Однако, все из нас знают или хотя бы раз слышали и другую единицу измерения количества теплоты (или просто тепла) это калория, а также килокалория, Мегакалория и Гигакалория, что означают приставки кило, Гига и Мега, смотреть пример с Джоулями выше. В нашей стране исторически сложилось так, что при расчёте тарифов за отопление, будь то отопление электроэнергией, газовыми или пеллетными котлами принято считать стоимость именно одной Гигакалории тепловой энергии.
Так что же такое Гигакалория, килоВатт, килоВатт*час или килоВатт/час и Джоули и как они связаны между собой?, вы узнаете в этой статье.
Итак, основная единица тепловой энергии это, как уже было сказано, Джоуль. Но прежде чем говорить об единицах измерения необходимо в принципе на бытовом уровне разъяснить что такое тепловая энергия и как и для чего её измерять.
Всем нам с детства известно, чтобы согреться (получить тепловую энергию) нужно что-то поджечь, поэтому все мы жгли костры, традиционное топливо для костра – это дрова. Таким образом, очевидно, при горении топлива (любого: дрова, уголь, пеллеты, природный газ, солярка) выделяется тепловая энергия (тепло). Но, чтобы нагреть, к примеру, различные объёмы воды требуется разное количество дров (или иного топлива). Ясно, что для нагрева двух литров воды достаточно нескольких пален в костре, а чтобы приготовить полведра супа на весь лагерь, нужно запастись несколькими вязанками дров. Чтобы не измерять такие строгие технические величины, как количество теплоты и теплота сгорания топлива вязанками дров и вёдрами с супом, теплотехники решили внести ясность и порядок и договорились выдумать единицу количества теплоты. Чтобы эта единица была везде одинаковая её определили так: для нагрева одного килограмма воды на один градус при нормальных условиях (атмосферном давлении) требуется 4 190 калорий, или 4,19 килокалории, следовательно, чтобы нагреть один грамм воды будет достаточно в тысячу раз меньше теплоты – 4,19 калории.
Калория связана с международной единицей тепловой энергии – Джоулем следующим соотношением:
1 калория = 4,19 Джоуля.
Таким образом, для нагрева 1 грамма воды на один градус потребуется 4,19 Джоуля тепловой энергии, а для нагрева одного килограмма воды 4 190 Джоулей тепла.
В технике, наряду с единицей измерения тепловой (и всякой другой) энергии существует единица мощности и, в соответствии с международной системой (СИ) это Ватт. Понятие мощности также применимо и к нагревательным приборам. Если нагревательный прибор способен отдать за 1 секунду 1 Джоуль тепловой энергии, то его мощность равна 1 Ватт. Мощность, это способность прибора производить (создавать) определённое количество энергии (в нашем случае тепловой энергии) в единицу времени. Вернёмся к нашему примеру с водой, чтобы нагреть один килограмм (или один литр, в случае с водой килограмм равен литру) воды на один градус Цельсия (или Кельвина, без разницы) нам потребуется мощность 1 килокалория или 4 190 Дж. тепловой энергии. Чтобы нагреть один килограмм воды за 1 секунду времени на 1 грдус нам нужен прибор следующей мощности:
4190 Дж./1 с. = 4 190 Вт. или 4,19 кВт.
Если мы хотим нагреть наш килограмм воды на 25 градусов за ту же секунду, то нам потребуется мощность в двадцать пять раз больше т.е.
Таким образом, можно сделать вывод, что пеллетный котёл мощностью 104,75 кВт. нагревает 1 литр воды на 25 градусов за одну секунду.
Раз мы добрались до Ватт и килоВатт, следует и о них словечко замолвить. Как уже было сказано Ватт – это единица мощности, в том числе и тепловой мощности котла, но ведь кроме пеллетных котлов и газовых котлов человечеству знакомы и электрокотлы, мощность которых измеряется, разумеется, в тех же килоВаттах и потребляют они не пеллеты и не газ, а электроэнергию, количество которой измеряется в килоВатт часах. Правильное написание единицы энергии килоВатт*час (именно, килоВатт умножить на час, а не разделить), запись кВт/час – является ошибкой!
Преобразуем килоВатты в килоДжоули/секунды (килоДжоуль в секунду), а часы в секунды: в одном часе 3 600 секунд, получим:
1 кВт*час =[ 1 кДж/с]*3600 c.=1 000 Дж *3600 с = 3 600 000 Джоулей или 3,6 МДж.
В свою очередь, 3,6 МДж/4,19 = 0,859 Мкал = 859 ккал = 859 000 кал. Энергии (тепловой).
Теперь перейдём к Гигакалории, цену которой на различных видах топлива любят считать теплотехники.
1 Гкал = 1 000 000 000 кал.
1 000 000 000 кал. = 4,19*1 000 000 000 = 4 190 000 000 Дж.= 4 190 МДж. = 4,19 ГДж.
Или зная, что 1 кВт*час = 3,6 МДж пересчитаем 1 Гигакалорию на килоВатт*часы:
1 Гкал = 4190 МДж/3,6 МДж = 1 163 кВт*часов!
Измерение количества теплоты в физике: калориметр и единицы измерения
Содержание:
При рассмотрении движения тел сумма их кинетической и потенциальной энергий в замкнутой системе постоянна. Если она получает энергию извне или растрачивает её, например, на преодоление сопротивления (воздуха, трение), состояние движущегося тела изменяется. Чаще всего наблюдается его нагревание с выделением теплоты в окружающую среду. Рассмотрим, в чем измеряется количество теплоты в физике. Расскажем, кто первым выполнил эти замеры и как.
Нагревание предметов при совершении работы
Изменение энергетического состояния тел бесследно не протекает. Они нагреваются в области контакта: трения, ударения, деформации. Даже проволока греется в месте изгибания или удара по ней молотком. Иногда тела из цельных, вследствие выполнения работы, превращаются в мелкодисперсные: разбрызгивание воды, крошение мела о доску, размалывание зерна. Изредка вещество под действием механического усилия превращается из твёрдого в жидкое.
При выполнении работы, направленной на преодоление сил трения, когда тело измельчается, плавится, испаряется либо нагревается, его внутренняя энергия растёт. Если вещество конденсируется из пара или охлаждается – она снижается.
Люди этими знаниями владели на протяжении тысячелетий, но лишь в XIX английский физик Джеймс Джоуль смог определить разницу температуры тела до совершения им работы и после неё. Учёный изобрёл для этого незамысловатый прибор, названный его именем – прибор Джоуля.
Он опустил ось с лопастями в сосуд с водой. Между рядами лопастей установил перегородки, ударяясь о которые вода нагревалась. На ось намотал верёвку и пропустил её через блок. К концу привязал груз массой m и отпускал его. Тот падал с определённой высоты, заставляя ось с лопастями вращаться.
Слои воды тёрлись один о другой, взаимодействовали с лопастями, стенками и перегородками сосуда, нагреваясь. При изменении условий эксперимента: количество воды, размеры установки, вес груза, высота его падения, энергия для нагрева 1 кг жидкости на 1 К оставалась неизменной.
В каких единицах измеряют количество теплоты
Другие учёные проводили опыты с нагревом газа, трением металлических дисков друг о друга. Сравнить результаты было трудно, ведь использовались разные тела в различных условиях, но все они подтвердили закон сохранения энергии: внутренняя, кинетическая и потенциальная энергия замкнутых систем остаётся неизменной.
Многие знают, в чем измеряется тепло, применяемое для обогрева помещений – это гигакалория.
Для нагрева 1 грамма воды на один градус Цельсия нужна одна калория.
В чем же измеряется количество тепла в физике? Для описания тепловых процессов применяется единица энергии Джоуль, причём количество этой теплоты зависит от способа её измерения. Для последней цели применяется калориметр – это прибор для измерения поглощаемой или выделяемой телом тепловой энергии вследствие протекания физических, биологических, химических или комбинированных процессов. Ввёл в физику понятие французский учёный Лавуазье, работавший вместе с Лапласом в конце XVIII века.
Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры.
Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.
Количество теплоты
Обозначается латинской буквой Q.
Удельная теплоемкость вещества
Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу.
Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).
Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества.
Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.
Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:
Формула для нахождения количества теплоты Q:
Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).
Уравнение теплового баланса:
Q отданное + Q полученное = 0.
Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:
Примеры решения задач
Следующие задачи покажут примеры расчета необходимого количества теплоты.
Задача №1
Задача №2
В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?
Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 100 0 С — 10 0 С = 90 0 С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов.
Количества теплоты, которые получили оба объекта (Q1 – для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.
Единицы тепла
Количество тепла
Большая калория (килограмм-калория) есть количество тепла, необходимое для нагревания 1 кг воды при 15° на 1° С.
Практически большая калория = средней калории = 1/10 количества тепла, неодля нагревания 1 кг воды от 0° до 100° С.
Малая калория (грамм-калория) есть количество тепла, необходимое для нагревания 1 г воды на 1° С., т. е. 1/1000 большой калории.
Во французской системе М — Т — S единицей количества тепла служит термин — количество тепла, необходимое для нагревания 1 тонны воды при 15° на 1° С.
В этой системе большая калория называется миллитермией, малая калория — микротермией.
В холодильной технике для измерения количества теряемого тепла применяется фригория, равная по абсолютной величине большой калории.
Теплота и работа эквивалентны. Значение одной единицы количества тепла в единицах работы называется механическим эквивалентом тепла. Значение одной единицы работы в тепловых единицах называется калорическим эквивалентом работы.
1 б. кал. = 4,186•10 10 эргов = 426,9 килограммометрам = 4184 международн. джоулям = 3,968 В. Т. U.
1 англ. тепловая единица (В. Т. U.) = 0,2520 б. кал. = 778 фунто-футам (анг.) = 107,6 килограммометрам
Теплоемкость
Теплоемкость различных веществ при 15° С
Алкоголь | 0,58 | Алюминий | 0,214 | Бензол | 0,41 |
Бронза | 0,09 | Вода | 0,999 | Водяной пар | 0,48 |
Гипс | 0,20 | Гранит | 0,20 | Графит | 0,2 |
Древесный уголь | 0,2 | Железо | 0,111 | Золото | 0,031 |
Керосин | 0,51 | Латунь | 0,090 | Лед | 0,463 |
Каменный уголь | 0,31 | Машинное масло | 0,40 | Медь | 0,092 |
Мрамор | 0,20 | Никкель | 0,105 | Олово | 0,054 |
Платина | 0,032 | Ртуть | 0,0333 | Свинец | 0,031 |
Сера | 0,17 | Серная кислота | 0,33 | Серебро | 0,055 |
Скипидар | 0,42 | Сталь | 0,114 | Стекло | 0,19 |
Сурьма | 0,050 | Цинк | 0,002 | Эфир | 0,56 |
Теплоемкость не постоянна: с увеличением температуры она немного возрастает для всех тел, кроме ртути, для которой она убывает
Изменение состояния тел с температурой
Точки плавления и отвердевания различных тел при нормальном атмосферном давлении
Азот | -209,9 | Алкоголь | -114 |
Алюминий | 657 | Аммиак | -78,2 |
Анилин | -6,2 | Боксит | 1820 |
Бензол | 5,50 | Бор | 2400 |
Бронза | 900 | Бура | 878 |
Ванадий | 1800 | Висмут | 267,5 |
Вода | 0 | Вода морская | -2,5 |
Вольфрам | 3400 | Воск | 64 |
Вуда сплав | 60-70 | Глинозем чистый | 2010 |
Глицерин | -20 | Дельта-металл | 950 |
Доменные шлаки | 1300-1430 | Железо | 1530 |
Чугун серый | 1200 | Чугун белый | 1130 |
Золото | 1063 | Инвар (никкелевая сталь) | 1425 |
Иридий | 2340 | Кадмий | 320,9 |
Калий | 62,5 | Кальций | 113,5-119,5 |
Каучук | 125 | Кислород | -218 |
Кобальт | 1480 | Кремний | 1420 |
Латунь | 900 | Магналий | 600-700 |
Магний | 651 | Марганец | 1210 |
Масло льняное | -20 | Масло репное | -3,5 |
Медь | 1083 | Молибден | 2500 |
Натрий | 97,5 | Нафталин | 80,0 |
Никкель | 1450 | Олово | 231,8 |
Осмий | 2700 | Палладий | 1557 |
Парафин | 64 | Платина | 1764 |
Поваренная соль | 800 | Повар, соль, конц. раств | 18 |
Припой мягкий | 135-210 | Припой с висмутом | 94-125 |
Ртуть | -38,89 | Свинец | 320,9 |
Сера | 112,8 | Сернистый ангидрид | -72 |
Сероуглерод | -112 | Серебро | 960,5 |
Скипидар | -10 | Спермацет | 49 |
Сталь | 1300-1400 | Стеарин | 68 |
Сурьма | 630 | Тантал | 2850 |
Титан | 1800 | Толуол | -94,5 |
Углекислота | -78,5 | Фарфор | 1550 |
Фосфор | 44 | Хлористый кальций | 720 |
Хлороформ | -63,7 | Хром | 1520 |
Феррохром | 2180 | Цинк | 419,4 |
Точки плавления конусов 3егера
№ | ° С | № | ° С | № | ° С | № | ° С |
022 | 600 | 07а | 960 | 9 | 1280 | 29 | 1650 |
021 | 650 | 06а | 980 | 10 | 1300 | 30 | 1670 |
020 | 670 | 05а | 1000 | 11 | 1320 | 31 | 1690 |
019 | 690 | 04а | 1020 | 12 | 1350 | 32 | 1710 |
018 | 710 | 03а | 1040 | 13 | 1380 | 33 | 1730 |
017 | 730 | 02а | 1060 | 14 | 1410 | 34 | 1750 |
016 | 750 | 01а | 1080 | 15 | 1435 | 35 | 1770 |
015а | 790 | 1а | 1100 | 16 | 1460 | 36 | 1790 |
013а | 815 | 2а | 1120 | 17 | 1480 | 37 | 1825 |
012а | 835 | 3а | 1140 | 18 | 1500 | 38 | 1850 |
011а | 855 | 4а | 1150 | 19 | 1520 | 39 | 1880 |
010а | 880 | 5а | 1180 | 20 | 1530 | 40 | 1920 |
00а | 900 | 6а | 1200 | 26 | 1580 | 41 | 1960 |
09а | 920 | 7 | 1230 | 27 | 1610 | 42 | 2000 |
08а | 940 | 8 | 1250 | 28 | 1630 |
Керамические материалы и изделия, точка плавления которых соответствует № 26 и выше, называются огнеупорными
Точка кипения разных веществ при атмосферном давлении
Азот | -196,8 | Алкоголь | -78,3 |
Алюминий | 1800 | Аммиак | -33,4 |
Анилин | 184,2 | Ацетилен | -83,6 |
Ацетон | 66,7 | Бензол | 80,2 |
Бензофенон | 305,9 | Висмут | 1420 |
Вода | 100 | Водород | -252,8 |
Воздух | -193 | Гелий | -268,8 |
Глицерин | 290 | Железо | 2450 |
Кадмий | 767 | Кислород | -183,0 |
Льняное масло | 316 | Магний | 1120 |
Марганец | 1900 | Медь | 2300 |
Метиловый алкоголь | 64,7 | Нафталин | 218,0 |
Нитробензол | 210 | Окись углерода | -190 |
Олово | 2270 | Парафин | 300 |
Поваренная соль, нас. раствор | 108 | Ртуть | 356,7 |
Свинец | 1525 | Сера | 444,5 |
Сернистый ангидрид | -10,0 | Сероуглерод | 46,2 |
Скипидар | 161 | Толуол | 110,8 |
Углекислота | -78,5 | Уксусная кислота | 118,5 |
Фосфор | 287 | Хлор | 35,8 |
Хлористый кальц., нас. раст | 180 | Хлороформ | 62 |
Цинк | 906 | Эфир | 34,5 |
Скрытая теплота плавления
Скрытая теплота плавления какого-либо вещества есть число больших калорий, затрачиваемое для превращения 1 кг вещества из твердого состояния в жидкое без повышения температуры. То же самое количество тепла освобождается при отвердевании расплавленного вещества
Скрытые теплоты плавления различных веществ
Алюминий | 94 | Аммиак | 33,4 | Висмут | 10,2 |
Доменные шлаки | 50 | Кадмий | 10,8 | Лед (вода) | 79,7 |
Медь | 41 | Нафталин | 36 | Олово | 13,8 |
Платина | 27 | Ртуть | 2,8 | Свинец | 5,5 |
Сера | 9 | Серебро | 26,0 | Фосфор | 5,0 |
Цинк | 23,0 | Бензол | 30,4 | Железо | 49 |
Скрытая теплота кипения
Скрытая теплота кипения жидкости есть число больших калорий, затрачиваемое на превращение 1 кг жидкости при постоянном внешнем давлении в пар той же температуры. Такое же количество тепла освобождается при конденсации пара. Скрытая теплота кипения зависит от температуры
Скрытая теплота при температуре кипения
Алкоголь | 202 | Аммиак (при 0 ) | 321 | Анилин | 104 |
Азот | 48 | Бензол | 94 | Вода | 539,1 |
Водород | 110 | Кислород | 51 | Сера | 362 |
Сернистый ангидрид | 96 | Сероводород | 85 | Скипидар | 70 |
Толуол | 87 | Углекислота | 142 | Хлор | 62 |
Хлористый метилен при (0) | 97 | Хлороформ | 58 | Эфир | 90 |
Расширение тел от теплоты
Коэффициент линейного расширения α есть увеличение длины тела при увеличении температуры на 1° С и при первоначальной длине, равной 1.
Коэффициент объемного расширения = 3α для твердых однородных тел. Для всех газов при постоянном давлении расширение на 1° повышения температуры составляет почти одинаково 1/273 = 0,00366 первоначального объема
Коэффициент линейного расширения на 1°С
Железо и сталь имеют почти одинаковое расширение.
Усадка
При затвердевании и остывании размеры металлов изменяются. Возникающие натяжения, вызываемые неравномерным охлаждением и неодинаковым распределением материала, увеличивают или уменьшают размеры с одной или другой стороны отливки
Металл | Линейная относи- тельная | Линейная см на 1м | Поверхн относи- тельная | Поверхн см 3 на 1м 3 | Объемная относи- тельная | Объемная см 3 на 1м 3 |
---|---|---|---|---|---|---|
Алюминий | 1:56 | 1,79 | 1:28 | 357 | 1:19 | 53590 |
Алюмин. бронза | 1:53 | 1,89 | 1:27 | 377 | 1:18 | 56610 |
Бронза | 1:63 | 1,59 | 1:32 | 317 | 1:21 | 47610 |
Колокольный мет. | 1:65 | 1,54 | 1:33 | 308 | 1:22 | 46140 |
Латунь | 1:65 | 1,54 | 1:32 | 313 | 1:22 | 46140 |
Медь | 1:125 | 0,80 | 1:63 | 160 | 1:42 | 24000 |
Олово | 1:128 | 0,78 | 1:64 | 156 | 1:43 | 23400 |
Сталь | 1:50 | 2,00 | 1:25 | 400 | 1:17 | 60000 |
Свинец | 1:92 | 1,09 | 1:46 | 217 | 1:31 | 32610 |
Цинк | 1:62 | 1,61 | 1:32 | 313 | 1:21 | 48300 |
Чугун | 1:96 | 1,04 | 1:48 | 208 | 1:32 | 31260 |