какая максимальная скорость космического корабля
Какой скорости достигают космические корабли при межзвездных полетах?
В космосе происходит настоящая гонка существующих на Земле держав. Люди стремятся лучше узнать космос и соревнуются в темпах его покорения. Если говорить про скорость космических кораблей, то гонка будет не абстрактной, а самой настоящей.
На данный момент скорость космических кораблей далека от идеала, но во всем мире ученые и конструкторы работают над ее повышением. Скорость должна быть такой, чтобы преодолеть силу притяжения космического тела и объектов его системы. Данный показатель обладает классификацией:
Чтобы обличить эти показатели в конкретные цифры, применяют коэффициенты отдаления от земного ядра. Но в практике нередко применяют эталонные значения.
На какой скорости можно долететь до Луны?
Сначала потребуется пересилить земное притяжение, нужна скорость 29 тысяч километров в час. Но этого недостаточно, так как понадобится еще и справиться с гравитационным полем самого спутника. Для этого развивают скорость как минимум 40 тысяч км в час. Придерживаясь такого темпа до самой посадки, космический корабль сможет благополучно прилуниться, как это сделали первые люди на Луне. По земным меркам на это уйдет около трех суток, но время в космосе перестает быть постоянной величиной.
Как долететь до Марса и других планет?
Путешествие на Марс займет больше времени, так как находится он значительно дальше. На данном уровне развития технологий на это потребуется более шести месяцев. Самая большая техническая проблема в том, что пилотируемым аппаратам не хватает импульса движения. Объем и масса таких космических кораблей очень большие, и из-за этого они не могут достигнуть нужных величин для стабильного перемещения. Единственная возможность посещения Марса на данный момент — на легких аппаратах, такие используют для сбора образцов. Другие планеты находятся намного дальше, поэтому их посещение на данный момент является несбыточными планами.
Какая скорость максимальная?
Чтобы совершить полет в космос, нужно принять во внимание целый ряд величин. На скорость влияет множество факторов, самый весомый из них — мощность двигателя. Чем большая сила будет создаваться при вырывании газа из сопла, тем мощнее будет продвижение летательного корабля вверх. Интересный факт: чем выше скорость, тем медленнее идет время, это один из удивительных законов космоса.Чтобы определить максимальную скорость для конкретной ракеты, нужно знать не только тип двигателя, но и параметры: вес, размеры, эргономика. Но на данный момент существуют максимальные показатели для аппарата с реактивным двигателем — 10 800-14 400 км в час. Существуют разработки, которые помогут человечеству этот барьер перешагнуть. К такой относят ионный двигатель, с ним летательный аппарат сможет разогнаться до 300 000 км в секунду.
Какую максимальную скорость может развить корабль в космосе?
Космические полеты будоражили воображение, с того момента, как человечество заподозрило о существовании пространства вне нашей планеты. Многие годы страны соревнуются в создании ракет и звездных кораблей, чтобы покорить просторы вселенной и узнать ее тайны. Чтобы еще быстрее достигать далеких планет ученые ведут работу над изобретением высокоскоростных двигателей. На сегодняшний день максимальная скорость в космосе еще далека от идеала и не позволяет путешествовать далеко, но наука не стоит на месте и, возможно, скоро ученые преодолеют свои нынешние возможности, научив космолеты быстро путешествовать на очень большие расстояния.
Циолковский полагал, за освоением межпланетного пространства кроется счастливое будущее человека и пока не хочется с ним спорить. Эта сфера предлагает людям немыслимые возможности как в расширении жизненного пространства, так и для развития промышленности и других сфер человеческой жизни.
Виды скорости космического корабля в космосе
У каждого космического тела, движущегося по своей орбите, есть скорость. Это величина которая позволяет объекту преодолеть тяготение космического тела и его системы. Для того чтобы достичь необходимых показателей судно должно иметь и определенные параметры, тогда оно достигнет поставленной цели. Темп движения любого летательного аппарата зависит от нескольких факторов, например из нашей статьи ты можешь узнать от чего зависит скорость самолета. Как мы уже выяснили эта величина есть у каждого объекта и она может делится не категории, в зависимости от возможностей:
Рассчитать необходимые показатели можно с учетом любого коэффициента удаления от центра земли. Но в космонавтике часто используются шаблонные величины.
Скорость корабля для полета на Луну
Полеты на Марс и другие планеты
Марс находится на большем удалении чем Луна и логично, что для достижения этой планеты понадобится больше времени. Учитывая возможности современных летательный устройств до красной планеты придется добираться более полугода. На сегодняшний день сложность заключается в том, что запустить пилотируемый аппарат будет очень сложно, за счет недостаточного импульса движения. Он иметь большую массу и объемы, а значит не сможет достичь необходимых для стабильного движения показателей. Единственно доступным, при нынешнем развитии отрасли является посещение планеты на легких аппаратах, для сбора образцов. Полеты на другие планеты пока не рассматриваются вовсе. Доступные космические тела находятся в еще большем удалении от Марса. поэтому и посещение их невозможно.
Какая максимальная скорость ракеты в космосе в км/ч?
Все величины, при расчете полетов в космос имеют значение и все они учитываются при вычислениях. Так и движение любого летательного аппарата, посылаемого в космос будет зависеть в первую очередь от двигателя. Чем выше сила, с которой газ вырывается из сопла двигателя, тем активнее он будет толкать летательный аппарат вперед и тем больший темп он сумеет развить. Примечательно, что с повышением скорости замедляется течение времени для всех пассажиров летательного аппарата. Даже международная космостанция, находящаяся на орбите земли, имеет свое течение времени. Об этом подробнее ты сможешь узнать из статьи «Как идет время на МКС».
Возвращаясь к вопросу о максимальном темпе движения ракеты в космосе нужно учесть ее размеры и вес. Однако максимальные показатели, которых могут достичь все известные летательные аппараты на реактивном двигателе 10 800-14 400 км/ч. Но существуют и другие виды потенциальных разработок, которые теоретически позволяют на много перешагнуть этот порог.
Ионные двигатели для космических аппаратов
Известно, что создав специальные установки, в которых можно разогнать мельчайшие частицы – ионы и электроны, человек теоретически смог бы создать аппарат, способный летать 300 тыс. км/с. Такие сооружения очень массивны и пока еще не придуман способ установки их на космолетах или ракетах. В свою очередь установки чуть поменьше и более медленные, соответственно, оборудовать можно. Именно такой вариант покорения далеких планет и берут на вооружение сегодня. Теперь, узнав какую максимальную скорость может развить корабль в космосе, ты сможешь более четко представить себе всю сложность и необычность полетов к другим далеким планетам.
Скорость ракеты в космосе км/ч для межзвездного полета
Вырвавшись в космос, люди не остановились на путешествиях вокруг Земли. Следующей целью явилась Луна и чтобы туда долететь надо было прежде преодолеть притяжение Земли. Для этого скорость ракеты была 11,2 км/с или 40 000 км/ч.
Скорость ракеты 7,9 км/с (29 тыс.км/ч) необходимо чтобы попасть на околоземную орбиту, 11,2 км/с (40 тыс. км/ч) — если нужно отправить корабль в межпланетное путешествие.
Скорость корабля для полета на Луну
Для полёта на Луну космический корабль стартовал до орбитальной скорости в 29 000 км/ч, а затем разогнан до скорости примерно до 40 000 километров в час. При такой скорости космический корабль может удалиться на расстояние, на котором на него уже притяжение Луны сильнее притяжения Земли. Современная техника позволяет создавать корабли, достигающие упомянутой быстроте перемещения.
Однако если не будут действовать двигатели корабля, он разгонится притяжением Луны и упадет на нее с огромной силой, и всё живое внутри корабля погибнет. Поэтому, если в начале пути Земля-Луна реактивные двигатели ускоряют корабль в направлении к Луне, то после того как лунное притяжение сравняется с земным, двигатели будут действовать в противоположном направлении. Так обеспечивается мягкая посадка на Луну, при которой все люди внутри корабля остаются невредимыми.
Воздуха на Луне нет поэтому находиться на ней люди могут только в специальных скафандрах. Первым человеком, ступившим на поверхность Луны, был американец Армстронг, и произошло это в 1969 году, тогда первое знакомство с составом лунного грунта состоялось. Изучение его поможет лучше понять историю образования солнечной системы. Геологи не исключают нахождение на Луне таких ценных веществ, которые будет целесообразно добывать.
Масса Луны существенно меньше массы Земли. Значит, взлететь с нее легче и дорога в дальний космос легче осуществится с нее. Не исключено что эту возможность человечество в дальнейшем будет использует. Скорость вылета на орбиту Луны гораздо меньше и составляет — 1,7 км/с или 6120 км/ч.
Полеты на Марс и другие планеты
Это 266 666 км в день или со скоростью 11 111 километров в час 3 км в секунду.
Одной из основных существующих проблем при полете на другие планеты является скорость ракеты в космосе км/ч которой не достаточно. Пока что более реальней планируется полёт на Марс за марсианскими образцами.
Если до самой ближайшей планеты Марс лететь минимум 210 дней, что физически трудно, но достижимо для человека, то полеты на другие планеты невозможны из-за физиологических возможностей людей.
Скорость ракеты в космосе км/ч зависит от двигателя. Чем с большей быстротой вырываются газы из сопла реактивного двигателя, тем быстрее летит ракета. Газ, образующийся при сгорании современного химического топлива, имеет скорость 3-4 километра в секунду (10 800-14 400 километров в час). И этим ограничивается максимальная быстрота перемещения, которую они могут сообщить ракете с космическим кораблем.
Ионные двигатели для космических аппаратов
А вот ионы и электроны в специальных ускорителях могут быть разогнаны до быстроты близкой к скорости света — 300 000 километров в секунду. Однако такие ускорители — это пока массивные сооружения не подходящие для летательных аппаратов. Но установки, у которых скорость истечения заряженных частиц около 100 километров в секунду, могут быть на ракетах установлены. Следовательно, они могут сообщить соединенному с ними телу быстроту перемещения большую, чем может достигнуть ракета с химическим топливом. К сожалению, у созданных к настоящему времени ионных космических двигателях сила тяги мала, и вывести на орбиту многотонную ракету с кораблем пока они не могут.
Однако их целесообразно устанавливать на корабле с тем, чтобы они работали, когда корабль уже летает по орбите. Находясь на корпусе корабля, они могут непрерывно поддерживать его ориентацию и постепенно слабым воздействием увеличивать скорость корабля выше той, которую ему сообщили с помощью химического горючего.
Разработка таких, действующих на орбите, электрореактивных двигателей ведется, используя различные физические явления. Одна из задач, стоящих перед разработчиками ионных космических двигателей, сделать их пригодными для полетов на другие планеты.
Возможность достичь с такими двигателями значительно больших скоростей ракеты в космосе, чем с химическим топливом, делает более реальным создание кораблей для полетов на ближайшие планеты.
«Вояджер»: самый быстрый космический аппарат во Вселенной
19 января 2006 года земляне запустили зонд «Новые горизонты» — автоматическую межпланетную станцию, которая должна будет изучить Плутон, Харон и объект в поясе Койпера. Полная миссия аппарата рассчитана на 15—17 лет. Окрестности Земли «Новые горизонты» покинул с самой большой скоростью среди известных космических аппаратов — 16,26 км/с относительно Земли. Гелиоцентрическая скорость — 45 км/с, что позволило бы аппарату уйти из Солнечной системы без гравитационного маневра. Однако есть в этой Вселенной аппарат, созданный руками человека, который летит еще быстрее и равных ему в скорости пока нет.
Два космических зонда Voyager побили все рекорды по пройденным расстояниям. Они отправили нам фотографии Юпитера, Сатурна и Нептуна и продолжают двигаться прочь из Солнечной системы. 22 февраля 2014 года «Вояджер-1» находился на расстоянии около 19 миллиардов километров от Земли и по-прежнему отсылает нам данные — 10 часов они идут от зонда к нашей планете. Несколько лет назад мы писали, что «Вояджер-1» покинул Солнечную систему. Как зондам удается передавать данные так далеко?
Космический корабль «Вояджер» использует 23-ваттный радиопередатчик. Это больше, чем у обычного мобильного телефона, но в общем порядке вещей этот передатчик достаточно маломощный. Большие радиостанции на Земле передают десятки тысяч ватт, но все равно сигнал достаточно слабый.
Ключом к успеху, благодаря которому сигнал будет доходить вне зависимости от мощности радиопередатчика, стала комбинация трех вещей:
Антенны, которые использует «Вояджер», достаточно велики. Вы наверняка видели спутниковые тарелки у любителей телевидения. Обычно они 2—3 метра в диаметре. У антенны «Вояджера» диаметр 3,7 метра, и она передает данные, которые принимает 34-метровая антенна на Земле. Антенна «Вояджера» и антенна Земли направлены прямо друг на друга. Всенаправленная маленькая антенка вашего телефона и 34-метровый гигант — совершенно разные вещи.
Спутники «Вояджер» передают данные в 8-гигагерцевом диапазоне, на этой частоте мало помех. Антенна на Земле задействует мощный усилитель и получает сигнал. После этого отправляет сообщение обратно на зонд с помощью мощнейшего передатчика, чтобы «Вояджер» наверняка получил сообщение.
На передовой
«Вояджер-1» передает данные на Землю с 1977 года. Но члены команды, контролирующей миссию в Лаборатории реактивного движения NASA, не так давно обрадовали нас интересной новостью. 12 сентября 2013 года NASA подтвердило, что зонд вступил в область гелиопаузы, где солнечный ветер нашего Солнца уже не так силен, чтобы сталкиваться с солнечными ветрами соседних звезд. В этот момент «трехосный магнитометр» зафиксировал изменение магнитного поля, перпендикулярного направлению движения зонда. «Вояджер-1» стал первым объектом техногенного происхождения, покинувшим Солнечную систему.
Золотая Запись на борту «Вояджера»: 117 изображений Земли, приветствие на 54 языках, земные звуки
Циники — как и большинство астрономов, космологов и само NASA — говорят, что граница Солнечной системы определяется как точка, где объект перестает подвергаться воздействию солнечной гравитации. Но гравитация, как вы знаете, определяет Вселенную в огромных масштабах. И эта точка располагается на дистанции в 50 000 раз большей, чем расстояние от Солнца до Земли. «Вояджер-1» проехал 123 расстояния от Земли до Солнца (примерно 18 миллиардов километров). И ему понадобится еще 14 000 лет, чтобы при нынешней его скорости покинуть гравитационный захват Солнца.
Ничто не мешает программе «Вояджер» делать отличные наблюдения. «Вояджер-1» и его двойник, «Вояджер-2», вылетевший на 15 дней раньше, но опоздавший из-за экскурсии к Урану и Нептуну, обнаружили следы четырех газовых гигантов и множество странных астрономических явлений. И хотя «Вояджер-1» некоторое время оставался в пределах Солнечной системы, он вошел в зону, где заряженные частицы солнечного ветра сменятся пылью и другими материалами, заполняющими пространство между звездами.
За годы «Вояджеры» обнаружили ряд астрономических сюрпризов. Один из последних появился летом 2012 года, когда «Вояджер-1» обнаружил ранее неизвестное явление под названием «магнитное шоссе». В этом регионе, как показали инструменты на борту зонда, сталкиваются солнечное и межзвездное магнитные поля. Эдвард Стоун, главный по программе «Вояджера» с 1972 года, объяснил, что это происходит, когда частицы с низкой энергией внутри «гелиосферы» подменяются более высокоэнергетичными частицами из космоса.
Изображение Юпитера, сделанное «Вояджером-1» в апреле 1979 года
Создатели зондов рассчитывали, что те будут достаточно крепкими и прочными, чтобы выдержать все капризы космоса. Особенно во время близкого подлета к Юпитеру и Сатурну, а также экскурсиям к Урану и Нептуну в исполнении «Вояджера-2». Поэтому когда в 1973 году «Пионер-10» измерил радиацию вокруг Урана и Нептуна и обнаружил, что она выше, чем ожидалось, команда Стоуна потратила 9 месяцев на замену и реконструкцию каждого элемента зонда, который может пострадать. Конечно, зонды были спроектированы с избыточным запасом прочности. Например, каждый из зондов несет по две копии трех отдельных компьютерных систем. Но пока что мало какие бортовые системы нуждаются в перезагрузке. Можно с уверенностью сказать, что Стоун по-отцовски гордится своим творением и его подвигами.
Забота, с которой зонды делали здесь, на Земле, тоже сыграла свою роль в успехе миссии. Когда основной и дополнительный приемники на «Вояджере-2» отказали спустя год от начала миссии, земная команда активировала резервную систему, которая работает и по сей день. В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.
Изображения Урана: «Вояджер-2», июнь 1986 года, и одно из последних
Команда ученых регулярно обновляет систему управления для обеспечения оптимального использования ресурсов зондов во время их активной работы. Только за юпитерианскую фазу «Вояджера-1» это сделали 18 раз. Возьмем, к примеру, передачу данных. Когда «Вояджеры» облетали Юпитер и Сатурн, зонды были достаточно близки к Земле, чтобы послать несжатое изображение и другие данные на относительно высокой скорости передачи: 115 000 и 45 000 бит в секунду соответственно. Но поскольку сила сигнала изменяется обратно пропорционально квадрату расстояния между передатчиками, во время исследования Урана «Вояджер-2» передавал данные со скоростью 9000 бит/сек. У Нептуна число упало до 3000, тем самым уменьшив количество фотографий и данных, которые можно отправить домой.
Большинство резервных компьютеров включаются в работу, когда основная терпит крушение. Однако одна из вспомогательных систем зондов была активирована и работала совместно с основной. Это позволило отправлять 640-килобайтные изображения Урана с потерей качества после сжатия всего до 256 килобайт.
Как говорится, все гениальное — просто. Команда Стоуна экипировала зонды передовым аппаратным обеспечением под названием дешифратор Рида — Соломона. Устройство значительно снижает уровень погрешности, мешающий корректному прочтению сообщений в случае потерь отдельных битов. Первоначально «Вояджер» использовал старую и хорошо проверенную систему, которая отсылала один бит, «корректирующий ошибки», на каждый бит в сообщении. Дешифратор Рида — Соломона правил одним битом пять других. Забавно то, что в 1977 году способ дешифрации скорректированных данных по методу Рида — Соломона еще не существовал. К счастью, к тому времени, когда «Вояджер-2» достиг Урана в 1986 году, все было готово.
Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя миссия «Вояджера-1». 6 миллиардов километров
В настоящее время данные, которые приходят от «Вояджеров» на радиотелескопы по всему земному шару, идут со скоростью всего 160 бит в секунду. Это решение было принято сознательно, чтобы поддерживать постоянную скорость на протяжении всей миссии. Основные камеры были отключены после пролета последней планеты Солнечной системы, активными остались только несколько инструментов. Каждые шесть месяцев на протяжении 30 минут данные с 8-контактной цифровой ленты переносятся в сжатый архив на скорости 1400 бит в секунду.
Радиоизотопные термоэлектрические генераторы на основе плутония-238 будут поддерживать работу инструментов минимум до 2021 года. А к 2025 году после почти полувекового путешествия туда, где нет ничего человеческого, команда отключит зонды и будет сообщаться с ними в немного сентиментальной односторонней манере, чтобы «Вояджеры» верно шли своим курсом. И они будут лететь все дальше и дальше во тьму.
«Вояджер-1» несет достаточно ядерного топлива, чтобы продолжать служить во благо науки до 2025 года, а после смерти плыть по течению. По своей нынешней траектории зонд в конце концов должен оказаться в 1,5 световых годах от нас у звезды Camelopardalis в северном созвездии, которое выглядит чем-то средним между жирафом и верблюдом. Никто не знает, есть ли планеты возле этой звезды и обоснуют ли инопланетяне там резиденцию к моменту прибытия зонда.
Какая максимальная скорость космического корабля
Вы здесь
Космос – это таинственное пространство, которое не может не завораживать. Циолковский считал, что именно в космосе заключается будущее человечества. Пока нет никаких серьезных оснований спорить с этим ученым. Космос предлагает безграничные возможности для развития человечества и расширения жизненного пространства. К тому же, он скрывает в себе ответы на многочисленные вопросы. Сегодня человек стал активно использовать космическое пространство. Поэтому от того, как взлетают ракеты, во многом зависит наше будущее. Не менее важным является и понимание этого процесса людьми. Ниже мы расскажем вам о том, какую скорость может развивать полета космической ракеты и сколько времени уйдет на то, чтобы добраться до тех или иных космических тел.
Сразу стоит сказать, что вопрос: «С какой скоростью взлетает ракета?», не совсем правильный. Да, и вообще, приравнивать космические полеты к классическим единицам измерения не корректно. Ведь абсолютно не важно с какой скоростью взлетают ракеты, их много и все они имеет разные характеристики. Те, которые используются для вывода космонавтов на орбиту, летят не так быстро, как грузовые. В отличие от груза, человек, ограничен перегрузками. Такие грузовые ракеты, как, к примеру, сверхтяжелая Falcon Heavy может взлетать довольно быстро.
Рассчитать точные единицы скорости – непросто. В первую очередь потому, что они во многом зависят от полезной нагрузки ракеты-носителя. Не исключено, что ракета-носитель с полной загрузкой взлетает намного медленнее, чем полупустая. Но есть еще одна общая величина, к которой стремятся все ракеты – космическая скорость.
Существует первая, вторая и третья космические скорости. Первая – необходимая скорость, позволяющая двигаться по орбите и не падать на планету – это 7,9 километров в секунду. Вторая требуется для того, чтобы покинуть земную орбиту и направится к орбите другого небесного тела. Третья – позволяет космическому аппарату преодолевать притяжение Солнечной системы (СС), а также покинуть ее. На сегодняшний день с такой скоростью летят аппараты «Вояджер-1» и «Вояджер-2». Но вопреки словам журналистов, они еще не покинули границы СС. В плане астрономии им понадобится не меньше 30 тыс. лет, дабы добраться к облаку Орта. Гелиопауза же не считается границей звездной системы. Это всего лишь место, в котором солнечный ветер сталкивается с межсистемной средой.
Человечество не прекращает путешествия вокруг Земли. Чтобы долететь до Луны, нужно было преодолеть притяжение Земли, для этого ракета должна развивать скорость 40 000 км в час или 11,2 км в секунду.
Чтобы попасть на околоземную орбиту скорость ракеты должна быть 29 тыс. км в час или 7,9 км в секунду. Если же нужно отправить космический корабль в межпланетное путешествие, то скорость должна быть 40 тыс. км в час (11,2 км в секунду),
Какой должна быть скорость корабля для полета на Луну?
Для полета корабля на Луну он должен стартовать до орбитальной скорости в 29. тыс. км в час, а потом нарастать примерно до 40 тыс. км в час.
Космический корабль при такой скорости может удалиться на расстоянии, на котором на него уже будет сильнее притяжение Луны, нежели Земли. Современная техника позволяет разрабатывать корабли, которые соответствуют вышеупомянутой скорости перемещения. Но если двигатели корабля не будут действовать, он разгонится притяжением Луны и просто упадет на нее с большой силой, разрушив корабль. По этой причине, если в самом начале пути реактивные двигатели ускоряли космический корабль в направлении к Луне, то когда лунное притяжение сравнивалось с земным, двигатели начинали действовать в противоположном направлении. Таким образом, обеспечивалась мягкая посадка на Луну, при которой все люди на корабле оставались невредимыми.
На Луне нет воздуха, поэтому находится на ней можно исключительно в специальных скафандрах. Первым человеком, который спустился на поверхность Луны, стал американец Нил Армстронг, и это произошло в 1969 году. Тогда произошло первое знакомство человечества с составом лунного грунта. Его изучение позволило лучше понять историю образования Солнечной системы. Тогда геологи надеялись найти на Луне какие-то ценные вещества, которые можно было бы добывать.
Масса Земли существенно превышает массу Луны. Значит, взлететь с последней будет проще и дорога в дальний космос тоже осуществится легче. Не исключено, что в дальнейшем человечество будет использовать эту возможность. Скорость вылета на орбиту намного меньше и составляет 6120 км в час или 1,7 км в секунду.
Сколько лететь на Марс и другие планеты?
Расстояние до планеты Марс около 56 млн км. С учетом возможностей последних технологий лететь до Марса придется минимум 210 дней. Получается это 266 666 километров в день со скоростью 3 км в секунду или 11 111 км в час. Одна из главных проблем при полете на другие планеты – скорость ракеты в космосе километров в час будет недостаточно. На данный момент более реальным покажется полет на Марс за марсианскими образцами.
Если до ближней планеты Марс лететь около 210 дней, что сложно физически, но достижимо для человека, то полеты на другие планеты просто невозможны в результате физических возможностей людей.
Стоит отметить, что скорость ракеты зависит от двигателя. Чем быстрее будут вырываться газы из сопла двигателя, тем быстрее летит ракета. Газ, который образуется при сгорании современного химического топлива, развивает скорость 3-4 км в секунду (10 800 – 14 400 км в час). При этом максимальная быстрота перемещения, которую могут сообщить ракете с космическим кораблем, сокращается.
Специальные ионные двигатели для космических кораблей
Электроны и ионы в специальных ускорителях могут разгоняться до быстроты, приближенной к скорости света, а именно 300 тыс. км в секунду. Но такие ускорители – это пока ее массивные сооружения, которые не подходят для летательных аппаратов. Однако установки, у которых скорость истечения заряженных частиц примерно 100 км в секунду, могут быть установлены на ракетах. В результате, они могут сообщить соединенному с ними телу большую быстроту перемещения, чем способна достигнуть ракета с химическим топливом. К сожалению, у разработанных к настоящему времени ионных космических двигателях мала сила тяги, и вывести на орбиту многотонную ракету с кораблем они пока не могут.
Но их есть смысл устанавливать на корабле с тем, чтобы они работали, как только корабль летает по орбите. Располагаясь на корпусе корабля, они могут постоянно поддерживать его ориентацию и постепенно незначительным воздействием увеличить скорость корабля выше той, которую ему сообщили посредством химического горючего.
Разработка таких электрореактивных двигателей, действующих на орбите, ведется, применяя разные физические явления. Одна из главных задач, стоящих перед создателями ионных космических двигателей – адаптировать их для полетов на другие планеты.
Возможность достижения значительных скоростей полета ракеты в космосе с такими двигателями, чем с химическим топливом, делает более реальной разработку кораблей для полетов на ближайшие планеты.