какая минерализация воды оптимальна для питья

Иллюзия чистоты: влияет ли минерализация воды на её качество, и чем нам поможет TDS-метр?

В 90-е было модно закупаться измерителями уровня нитратов. Пищевые красители, консерванты — ерунда, а вот арбуз на нитраты проверить необходимо. Увы, эта история оказалась профанацией. Зато теперь из каждого youtube-утюга рассказывают про измерители качества воды — TDS-метры. На волне общего детокса и стремления к ЗОЖ многим хочется приобрести волшебную палочку, которая обеспечит здоровый образ жизни и вечную молодость, указав, что пить, а что не пить.

Соблазн определить качество воды «здесь и сейчас» симпатичным гаджетом, напоминающим электронный градусник, очень высок. Хайп вокруг TDS-метров продолжает множиться, ведь они обещают заменить лабораторию, посчитать растворенныe примеси и решить, «пить или не пить?».

Все это — удивительная по масштабу подмена понятий. Ведь определение «чистоты» воды по содержанию неизвестных растворенных примесей можно поставить в один ряд с измерением удава в попугаях.

какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Что не так в истории с TDS-метрами и стандартами питьевой воды, можно ли доверять TDS-метру и пить «одобренную» им жидкость — ниже разбираемся подробно и с использованием устрашающих терминов.

Начнем издалека: что есть «чистая и качественная» вода?

Кому-то достаточно, что вода из крана прозрачная и не пахнет, кто-то замораживает для придания «природной структуры», некоторые фильтруют, измеряя чистоту по отсутствию накипи, а продвинутый пользователь с TDS-метром пишет отзыв на тему «плохой фильтр, и вода от него грязная», получив высокое значение ppm. Объясним и это, но обо всем по порядку:

Слово о стандартах: чистота — понятие растяжимое

Поскольку в природе нет ничего абсолютно чистого, то и питьевая вода — раствор с примесями. Среди них: условно полезные, вредные, безобидные и даже «безобидные, но неприятные». Содержание примесей в водопроводах мира регулируют национальные законодательства, иногда ориентируясь на рекомендации ВОЗ. Уровни допустимых концентраций веществ, однако, не едины.

Разница обусловлена геологическими особенностями стран и разумной рациональностью. В условиях мегаполиса нецелесообразно отказываться от стальных труб для удаления ржавчины, экономически невыгодно снижать жесткость, невозможно обеспечивать бактериологическую безопасность без хлорирования (в большинстве водопроводов). Если в воде постоянно присутствуют высокие концентрации токсичных примесей из-за геологии на территории или промышленности, местные стандарты «подгоняются» под ситуацию.

Что аргентинцу — ПДК, то немцу — превышение норм ВОЗ

ВОЗ: «Мышьяк в высоких концентрациях естественным образом присутствует в грунтовых водах целого ряда стран».

Еще в 1990-х гг. в Бангладеш было зафиксировано повсеместное присутствие мышьяка в колодезной воде. Национальный стандарт на мышьяк сейчас поднят до отметки 0,05 мг/литр. Тем не менее, и сегодня десятки миллионов жителей страны подвергаются риску воздействия мышьяка в концентрациях, значительно превышающих 0,05 мг/литр.

Похожую природную аномалию ВОЗ отмечает в Аргентине, Камбодже, Чили, Китае, Венгрии, Мексике, Румынии, Таиланде, США и Вьетнаме. В частности, власти Аргентины даже по итогам жарких дебатов и пятилетних поисков решения, увы, так и не нашли способ обеспечить снижение национального стандарта на мышьяк с 0,05 мг/литр до рекомендуемых ВОЗ 0,01 мг/литр.

Стандарты российского СанПиН на мышьяк в сравнении со стандартами ВОЗ, ЕС и США
какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Но и ВОЗ не всегда права. Некоторые регионы мира страдают от избыточного содержания меди. Следствием активного использования меди и ее сплавов в водопроводном деле стали высокие национальные ПДК на медь в нашей стране, в США (1 мг/л) и в Германии (2 мг/л). Рекомендация ВОЗ, тем не менее, лояльна и не снижает эту планку, несмотря на то, что и 1 и 2 мг/л — это очень, очень много.

Стандарты российского СанПиН на медь в сравнении со стандартами ВОЗ, ЕС и США
какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Похожая ситуация с алюминием. Рекомендации не очень строги: соли алюминия используют для коагуляции в процессе муниципальной очистки воды, поэтому превышение ПДК наблюдается повсеместно. И отказаться нельзя, и присутствие вредно. За последнее десятилетие ПДК на алюминий снизилась, но актуальные цифры могут показаться дикими нашим внукам.

Стандарты российского СанПиН на алюминий в сравнении со стандартами ВОЗ, ЕС и США
какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Санитарные нормы несовершенны, постоянно ужесточаются, и не стоит относиться к ним, как к истине в последней инстанции. Просто помните: свинец, мышьяк и алюминий не становятся менее токсичными от того, что присутствуют в пределах ПДК.

Муниципальная подготовка воды нигде в мире не имеет задачи подать в кран «максимально чистую» воду. Это оправдано тем, что большая часть воды сливается в канализацию, минуя наши желудки. В водопровод подается безопасная и разумно дешевая вода, которая не отравит, если ее случайно проглотить в душе или выпить от безысходности после бурной вечеринки. Поэтому держим в уме:

Вода, соответствующая СанПиН, — «питьевая». Однако, положа тестовый образец в анализатор руку на сердце, не такая уж и чистая для длительного использования в качестве питьевой. Это первая ступень в «рейтинге питьевых вод», ниже которой находятся жидкости, которые пить без доочистки опасно.

Вернемся к нашим попугаям

А точнее — к примесям в питьевой воде. Часть веществ не мешают ей оставаться безвредной, ухудшая при этом её органолептические свойства. Так ведут себя карбонаты кальция, магния, хлорид натрия, фосфаты, сульфаты. Правда, они проявляют свой характер, когда концентрации достаточно велики.
Пусть это будут яркие, крикливые, но безобидные попугаи.

Часть веществ — ксенобиотики, яды в любой своей форме и при любой концентрации. Это свинец, ртуть, хром, мышьяк, хлорорганические соединения и многие другие вещества. Как мы уже выяснили, их концентрация в водопроводной воде определяется как нашими возможностями в очистке, так и внешними факторами. Они опасны, портят жизнь не сразу, но делают это эффективно, например, провоцируя возникновение и развитие раковых опухолей.
Пусть это будет тихий, но опасный удав.

Как компания — производитель фильтров, мы постоянно получаем «претензии» покупателей, которые оценивают работу фильтра по скорости появления накипи. То есть заметные и яркие органолептические свойства воды — жесткость и минерализация — зачастую воспринимаются как главный критерий качества очистки.

Применение TDS-метра, безусловно, поможет «экспериментатору» провести оценку размера стаи попугаев и даже понять, что их примерно 38. Однако удава за ними он уже не разглядит.

какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Основная задача фильтров для воды — защита от токсичного коктейля из остатков хлора (хлор — это яд), его органических производных и отходов промышленных и сельскохозяйственных предприятий: фенолов, нитратов, пестицидов, тяжелых металлов и так далее. В зависимости от модели, фильтры могут дополнительно защищать от бактерий, вирусов, аллергенов, антибиотиков и сотен других скрытых угроз.

Является ли минерализация загрязнением и критерием качества?

Выше мы обсудили, что нет единых мировых стандартов на примеси в питьевой воде. В этом свете измерительные шкалы, которые мы наблюдаем в многочисленных роликах о TDS-метрах, тем более кажутся красочной маркетинговой абстракцией. Пример типичной иллюстрации:

какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья
Похожие иллюстрации путешествуют из ролика в ролик, сообщая, что образцы с пометкой “от 400” уже непригодны для питья. Любопытно, что автора типичного теста на youtube не удивляет цифра 4500 в стакане весьма полезной минеральной воды уважаемого российского бренда.

Минерализация — физико-химический параметр водного раствора, такой же, как, например, его температура. Конечно, даже температуру можно считать параметром качества воды, когда отпуск короткий, а вода в море прохладная. Или когда очень хочется пить, но вода только что вскипела. С минерализацией тоже все относительно и зависит от конкретных условий.

Минерализация — такой же «критерий» качества воды, как и её температура. Этот показатель для пресной воды не относится к токсическим и не является загрязнением.

Использование воды разной минерализации — вопрос привычки. Жители меловых холмов или те, кто вырос у берега моря, где подземные воды тоже соленые (привет, Евпатория!), пьют такую воду каждый день. СанПиН и ВОЗ допускают общую минерализацию (по сухому остатку) не выше 1 г на литр (1000 ppm). Сакрального же смысла в знании того, что общая минерализация вашей воды это 100 или 1000 единиц по TDS-метру нет. С точки зрения бытовых неудобств — это неэстетичный осадок в чайнике, порча дорогих водонагревающих приборов (бойлер), невкусный чай и сухая кожа. Но это очевидно и без гаджета.

Почему качество воды после умягчающих проточных фильтров бессмысленно измерять TDS-метром

Максимально эффективен в борьбе с растворенными примесями только обратноосмотический фильтр. Принцип его устройства отличается от проточного фильтра благодаря присутствию специальной мембраны. Именно она разделяет водопроводную воду на очищенную и концентрат примесей, который сливается в дренаж.

Сорбционный (то есть проточный) водоочиститель не сможет «удалить» из воды соли, в том числе и ионы кальция или магния. Умягчающий вариант проточного фильтра имеет ионообменный модуль, который обеспечивает замену ионов кальция и магния на ионы натрия (реже — водорода), которые не выпадают в осадок при кипячении.

Изменение показаний TDS-метра после прохода воды через ионообменный модуль проточного фильтра непредсказуемо. Одни ионы меняются на другие, как при этом изменится электропроводность, рассчитать очень сложно. Колебания происходят как в большую, так и в меньшую сторону.

Устройство и истинное имя TDS-метра

Единственно верный метод измерения TDS (total dissolved solids) — это выпаривание и взвешивание. А то, что производители называют TDS-метрами, на самом деле — кондуктометры.

Крайне упрощенная схема работы кондуктометра:

Вода без примесей (чистая):

A. имеет высокое сопротивление и низкую проводимость;
B. в ней мало ионов (носителей электрического заряда);
C. когда в неё попадают электролиты (чистую воду посолили), образуются носители заряда — ионы, которые повышают её электропроводность, так как являются переносчиками электрического заряда.

какая минерализация воды оптимальна для питья. Смотреть фото какая минерализация воды оптимальна для питья. Смотреть картинку какая минерализация воды оптимальна для питья. Картинка про какая минерализация воды оптимальна для питья. Фото какая минерализация воды оптимальна для питья

Что не так с показателями TDS-метров

Проблема 1 — Терминологическая

Растворимые неэлектролиты, присутствующие в воде, не добавят воде электропроводности, т.е. кондуктометрический TDS-метр, погруженный в сладкий чай, заваренный на дистиллированной воде, покажет крайне низкое значение, но при выпаривании воды и взвешивании значение сухого остатка будет высоким.

TDS (total dissolved solids) означает массу твердого остатка, которая получится, если всю воду испарить. В твердом остатке останутся и растворимые электролиты (соли, кислоты, основания), и растворимые неэлектролиты, и нерастворимые твердые вещества (песок, глина), чья совокупная масса и называется в химии TDS. Кстати, в отечественной терминологии есть термин «общее солесодержание», который гораздо точнее отражает величину, которую измеряет кондуктометр.

Проблема 2 — Измерение эквивалента

TDS-метр чаще всего отградуирован по хлориду натрия. Поэтому если ионный состав тестируемой воды отличается от хлоридно-натриевого (очень жесткая вода, содержащая ионы кальция/магния и гидрокарбонат-ионы), то и оценки солесодержания в ppm, пересчитанные по хлоридно-натриевой градуировке, будут очень приблизительными.

В питьевой воде хлорид натрия редко является доминирующим компонентом. Из макро-катионов есть ионы кальция, магния, калия и т.д. Из анионов — хлорид-, сульфат-, карбонат/гидрокарбонат-, силикат-, фосфат- и т.д. Все они с разной подвижностью переносят электрический заряд.

А значит, про TDS-метр в строгом смысле нельзя сказать, что он измеряет «жесткость воды», «концентрацию солей» или, боже упаси, «загрязненность воды». Единственное, что можно о нем сказать, — он выдает на дисплее выраженную в ppm (мг/л) эквивалентную концентрацию раствора хлорида натрия температурой 25 С, которая даст ту же величину электропроводности, которую прибор зафиксировал здесь и сейчас.

В чем профит владения кондуктометром?

В видео наглядно объясняем, какие жидкости, кроме раствора солей, дают запредельный ppm, как температура воды влияет на точность измерения, а также проводим эксперимент с инсектицидом, который не является электролитом.

А в «сухом твердом остатке» на тему TDS-метра мы имеем:

1. TDS-метр поможет прикинуть общую минерализацию воды в случаях, когда стоит вопрос об установке фильтра, принцип работы которого основан на изменении минерального состава воды (обратный осмос).

2. TDS-метр поможет понять, когда в обратноосмотическом фильтре пора менять мембрану или же её ресурс пока достаточен. При замене мембраны это отличный способ проверить, есть ли в ней брак.

3. А еще замеры разных жидкостей TDS-метром — это отличный способ провести время с детьми и повод рассказать им о том, что такое электропроводность и почему измерять удава в попугаях весело, хоть и не практично.

Источник

Минерализация воды что это такое

Что такое общая минерализация воды

Под термином «общая минерализация воды» понимают концентрацию всех растворенных веществ минерального и органического происхождения (кроме газов). Реже этот показатель называют солесодержанием. Общую минерализацию воды нередко путают с сухим остатком. Однако минерализация воды и сухой остаток разные понятия. Сухой остаток определяют путем выпаривания жидкости, в процессе которого «уходят» летучие органические соединения. В зависимости от источника происхождения воды разница между сухим остатком и общей минерализацией достигает 10 %.

Как определить минерализацию воды

Для определения общей минерализации в воде в лаборатории используют два метода:

Источники минерализации воды

Вода считается универсальным растворителем, поэтому не может долго существовать в виде химически чистого вещества. Источники ее минерализации разделяются на две категории:

Классификация воды по уровню общей минерализации

Во всех учебниках химии представлена следующая классификация по минерализации подземных и поверхностных вод. По степени минерализации воды различают:

Нормы минерализации для питьевой и технической воды

В Российской Федерации качество питьевой воды регулируется следующими нормативными документами:

Допуски по общей минерализации для технической воды определяются ее назначением. Разработаны десятки ГОСТ и ТУ для каждой сферы применения. Высокие требования предъявляются к теплоносителям для систем отопления, охлаждения оборудования, к котельной воде для паровых электростанций. Повышенное солесодержание становится причиной отложений на внутренних стенках трубопроводов и теплообменников, что приводит к выходу из строя оборудования. Обычно, если в анализе превышена общая минерализация, то и такой показатель как жесткость имеет значения выше установленных норм. В этом случае мы рекомендуем одновременно удалять соли жесткости и минерализацию с помощью обратного осмоса и ионообменных фильтров.

Как минерализация питьевой воды влияет на организм

Данные анализов по общей минерализации не позволяют в полной мере оценить влияние питьевой воды на организм человека. Именно поэтому нормативы ВОЗ по этому показателю носят рекомендательный характер. Содержание растворенных солей влияет на вкусовые качества воды. Для оценки влияния на организм нужно определить концентрации всех растворенных веществ и сравнить их с ПДК.

Наибольший риск для организма представляют:

Снизить общую минерализацию воды и концентрации вредных примесей можно выпариванием, баромембранными и электромембранными методами. Об этих технологиях для очистки питьевой и технической воды от минерализации, используемых в современных системах водоподготовке, мы рассказали в статье «Очистка воды от минерализации».

Источник

Какая минерализация воды оптимальна для питья

Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.

Уровень содержания солей в питьевой воде разный в разных геологических регионах (вследствие различной растворимости минералов). Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (особенно когда соль используется для борьбы с обледенением дорог) и т.п.

В зависимости от минерализации природные воды можно разделить на следующие категории:

Минерализация г/дм 3

Уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л. При величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ рекомендован верхний предел минерализации воды в 1000 мг/л.

Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.

«Водная» тематика все чаще звучит в прессе, при этом часто приводятся рассуждения о достоинствах или недостатках воды с точки зрения снабжения организма минералами. В некоторых материалах, опубликованных в солидных изданиях, достаточно безапелляционно заявляется: «Как известно, с водой мы получаем до 25% суточной потребности химических веществ». Однако докопаться до первоисточников не удается. Попробуем поискать ответ на вопрос: «А сколько же может среднестатистический человек получить минеральных веществ из питьевой воды, отвечающей санитарным нормам?» В своих рассуждениях будем руководствоваться простым житейским здравым смыслом и знаниями в объеме средней школы. Результаты сведем в таблицу. Объясним содержимое ее колонок, а заодно и ход рассуждений.

Для начала необходимо определиться с несколькими исходными позициями:

1. Какие минеральные вещества и в каких количествах нужны человеку?

Вопрос о «минеральном составе» человека и, соответственно, потребностях его организма очень сложный. На бытовом уровне мы очень легко жонглируем (к сожалению и в массовой прессе тоже) терминами «полезные» элементы, «вредные» или «токсичные» элементы и т.п. Начнем с того, что сама постановка вопроса о вредности-полезности химических элементов относительна. Еще в древности было известно, что все дело в концентрациях. То, что полезно в минимальных количествах, может оказаться сильнейшим ядом в больших. Перечень основных (жизненно важных) макроэлементов и нескольких микроэлементов из Популярной медицинской энциклопедии приведен в 1-м столбце.

В качестве норм суточной потребности (2-й столбец) также использованы данные из Популярной медицинской энциклопедии. Причем, за базовое взято минимальное значение для взрослого мужчины (для подростков и женщин, особенно кормящих матерей, эти нормы зачастую больше).

2. Каков минеральный состав «средней» воды?

В 4-м столбце таблицы рассчитывается, сколько воды надо употребить, чтобы набрать суточную норму по каждому элементу. Огромным допущением здесь является то, что при расчетах усвояемость минералов из воды принимается за 100%, что далеко не соответствует действительности.

3. Каково суточное потребление воды среднестатистическим человеком?

Для сравнения в 6-м столбце приведен мини-список пищевых источников поступления в организм тех же элементов. Перечень из нескольких продуктов использован для того, чтобы проиллюстрировать тот факт, что организм получает тот или иной макро- или микроэлемент не за счет одного продукта, а, как правило, понемногу из разных.

В 7-м столбце приведено количество того или иного продукта в граммах, употребление которого даст организму в сутки (с таким же допущением 100% усвояемости, что и для воды) то же количество соответствующего макро- или микроэлемента, что и гипотетическая питьевая вода.

Требуемое количество воды для получения 100% нормы

Теоретически возможный % получения мин. Веществ из воды

Кол-во продукта, обеспечи-вающее получение макро- и микро-элементов, равное поступающему с водой

Сыр твердый
Брынза
Петрушка
Творог
Курага
Фасоль
Молоко

12 г
24 г
49г
75 г
75 г
80 г
667 г

Грибы (сушеные)
Фасоль
Сыр твердый
Овсяная крупа
Печень
Рыба
Говядина
Хлеб (ржаной)

24 г
36 г
29 г
41 г
45 г
58 г
77 г
91 г

Арбуз
Орехи
Гречневая крупа
Овсяная крупа
Горох
Кукуруза
Хлеб пшен.2 сорт
Сыр (твердый)

27 г
30 г
30 г
52 г
56 г
56 г
68 г
120 г

Курага
Фасоль
Морская капуста
Горох
Арахис
Картофель
Редька
Помидоры
Свекла
Яблоко

0,86 г
1,31 г
1,44 г
1,66 г
1,87 г
2,53 г
4,03 г
4,97 г
5,00 г
5,18 г

Соль пищевая
Сыр мягкий
Брынза овечья
Капуста кваш.
Огурец сол.
Хлеб ржаной
Креветки
Морская капуста
Камбала

0,6 г
13 г
15 г
26 г
27 г
39 г
45 г
46 г
120 г

Соль пищевая
Хлеб ржаной
Хлеб пшеничный
Рыба
Яйцо куриное
Молоко
Печень говяжья
Простокваша
Овсяная крупа

0,5 г
31 г
36 г
182 г
192 г
273 г
300 г
306 г
375 г

Печень говяжья
Свинина
Яйцо куриное
Баранина
Горох
Фасоль
Грецкий орех
Гречка
Хлеб
Молоко коровье

42 г
45 г
57 г
61 г
53 г
63 г
100 г
114 г
170 г
345 г

Белый гриб суш.
Печень свиная
Горох
Гречка
Фасоль
Язык говяжий
Шпинат
Айва
Абрикос
Петрушка

1,1 г
1,8 г
5,3 г
5,4 г
6,1 г
8,8 г
10,3 г
12 г
18 г
19 г

Скумбрия
Минтай
Орех грецкий
Рыба морская

129 г
258 г
263 г
419 г

Печень говяжья
Печень свиная
Горох
Гречка
Фасоль
Геркулес
Баранина
Хлеб ржаной

32 г
40 г
160 г
187 г
251 г
266 г
504 г
546 г

Морская капуста
Печень трески
Хек
Минтай
Путассу, треска
Креветки
Морская рыба
Сердце говяжье

9 г
11 г
56 г
60 г
66 г
81 г
178 г
296 г

Из полученных данных отчетливо видно, что только 2 микроэлемента – фтор и йод мы теоретически можем получить из питьевой воды в достаточном количестве.

Разумеется, приведенные данные ни в коей мере не могут служить рекомендациями по питанию. Этим занимается целая наука диетология. Данная таблица призвана только проиллюстрировать тот факт, что получить все необходимые для организма макро- и микроэлементы гораздо проще и самое главное реальнее из пищи, чем из воды.

Удаление из воды минеральных солей

Деионизированная вода имеет широкий спектр применения в промышленности. Она используется в химической и фармацевтической отраслях, при производстве телевизионных электронно-лучевых трубок, при промышленной обработке кож и во многих других случаях.

Дистилляция основана на выпаривании обрабатываемой воды с последующей концентрацией пара. Технология является очень энергоемкой, кроме того, в процессе работы дистиллятора на стенках испарителя образуется накипь.

Электродиализ основан на способности ионов перемещаться в объеме воды под действием напряженности электрического поля. Ионоселективные мембраны пропускают через себя либо катионы, либо анионы. В объеме, ограниченном ионообменными мембранами, происходит снижение концентрации солей.

Обратный осмос представляет собой очень важный процесс, являющийся составной частью высокопрофессиональной очистки воды. Первоначально обратный осмос был предложен для опреснения морской воды. Вместе с фильтрацией и ионным обменом обратный осмос значительно расширяет возможности очистки воды.

Принцип его необычайно прост – вода продавливается через полупроницаемую тонкопленочную мембрану. Через мельчайшие поры, имеющие размеры, сопоставимые с размерами молекулы воды, способны просочиться под давлением только молекулы воды и низкомолекулярные газы – кислород, углекислый газ, а все примеси, остающиеся по другую сторону мембраны, сливаются в дренаж.

По эффективности очистки мембранные системы не имеют себе равных: она достигает практически 97-99,9% по любому из видов загрязнений. В результате получается вода, по всем характеристикам напоминающая дистиллированную или сильно обессоленную воду.

Проводить глубокую очистку на мембране можно только с водой, прошедшей предварительную комплексную очистку. Удаление песка, ржавчины и прочих нерастворимых взвесей производится механическим картриджем с ячейками до 5 микрон. Картридж на основе высококачественного гранулированного кокосового угля сорбирует растворенные в воде соединения железа, алюминия, тяжелых и радиоактивных металлов, свободный хлор и микроорганизмы. Очень важна последняя стадия предварительного этапа, где происходит окончательная очистка от мельчайших доз хлора и хлорорганических соединений, разрушительно воздействующих на материал мембраны. Она производится картриджем из прессованного кокосового угля.

После комплексной предварительной очистки вода подается на мембрану, после прохождения которой получается питьевая вода самого высокого класса очистки. А чтобы убрать из нее растворенные газы, придающие неприятный запах и привкус, воду на заключительном этапе пропускают через высококачественный прессованный активированный уголь с добавкой серебра. То обстоятельство, что в воде после очистки в мембранной системе почти полностью отсутствуют минеральные соли, уже не один год вызывает оживленные дискуссии. Хотя необходимое для организма количество макро- и микроэлементов гораздо эффективнее получать через пищу (см. выше), но многие настолько привыкли к вкусу, который придают воде минеральные соли, что при их отсутствии вода кажется безвкусной и «неживой». Однако полностью удалить вредные примеси, сохранив минеральные вещества в полезных концентрациях, оказывается настолько сложно и дорого, что обычно воду сначала максимально очищают, а потом вносят добавки, если это необходимо.

Следует отметить, что если исходная вода очень жесткая, содержит избыточное количество механических или растворенных примесей, то перед системой обратного осмоса рекомендуется установка дополнительных систем водоподготовки (обезжелезиватель, умягчитель, системы обеззараживания, механической очистки и т. п.).

Теоретически, мембраны удаляют почти все известные нам микроорганизмы, в том числе и вирусы, однако, при использовании в быту в системах питьевой воды, мембраны не могут обеспечить полную защиту от микроорганизмов. Потенциальные нарушения герметичности прокладок, производственные дефекты могут позволить некоторым микроорганизмам проникнуть в очищенную воду. Именно поэтому небольшие домашние системы обратного осмоса не должны использоваться в качестве основного средства для устранения биологического загрязнения.

Очень важно понимать, что процесс обратного осмоса идет только при давлении воды в системе не менее 2,5-2,8 атм. Дело в том, что на полупроницаемой мембране со стороны очищенной (обессоленной) воды всегда имеется избыточное осмотическое давление, которое препятствует процессу фильтрации. Именно это давление и необходимо преодолеть.

Как правило, железо присутствует в естественных водах в различных формах:

1. двухвалентные ионы железа, растворимые в воде (Fe 2+ );

2. трехвалентные ионы железа, растворимые только в очень кислой воде (Fe 3+);

3. нерастворимая гидроокись трехвалентного железа [Fe(OH) 3 ];

4. окись трехвалентного железа (Fe 2 O 3 ), присутствующая в виде частиц ржавчины из труб;

5. в комбинации с органическими соединениями или железными бактериями. Железные бактерии часто живут в воде, содержащей железо. По мере размножения, эти бактерии могут образовывать красно-коричневые наросты, которые могут забивать трубы и снижать напор воды. Разлагающаяся масса этих железных бактерий может быть причиной неприятного запаха и вкуса воды, а также появления пятен.

Железо редко находят в наземных водоемах. При попадании на поверхность вода, содержащая растворенное железо, является обычно чистой и бесцветной, с ярко выраженным вкусом железа. Под воздействием воздуха вода приобретает некую молочную дымку, которая вскоре окрашивается в рыжий цвет (появляется осадок гидроокиси железа). Такая вода оставляет следы практически на всем. Даже при содержании железа в воде 0.3 мг/л она оставляет ржавые пятна на любой поверхности.

Присутствие железа в воде крайне нежелательно. Избыточное железо накапливается в организме человека и разрушает печень, иммунную систему, увеличивает риск инфаркта.

Самым эффективным способом удаления средних концентраций железа может быть использование окисляющих фильтров. Такой фильтр должен устанавливаться на водопроводную трубу перед устройством для смягчения воды. Окисляющие фильтры обычно содержат фильтрующее вещество, покрытое двуокисью марганца (MnO 2 ). Это может быть обработанный марганцем глауконитовый песок, синтетический материал из марганца, натуральная марганцевая руда и другие схожие материалы. Окись марганца превращает растворимые ионы двухвалентного железа, содержащиеся в воде, в трехвалентное железо. Кроме того, соединения марганца являются мощным катализатором процесса окисления двухвалентного железа кислородом, растворенным в воде. Поскольку в подземной воде кислорода очень мало, для более эффективного процесса окисления, воду перед фильтром-обезжелезивателем, насыщают кислородом (воздухом). По мере формирования нерастворимой гидроокиси трехвалентного железа, она отфильтровывается из воды гранулированным материалом, находящимся в фильтре.

В случае высоких концентраций железа, для добавления в воду химических окислителей, таких, как гипохлорит натрия (бытовой отбеливатель «Белизна») или раствор марганцовокислого калия, могут использоваться маленькие насосы, эжекторы и другие устройства. Так же, как и двуокись марганца в фильтрах для железа, эти химические окислители превращают растворенное двухвалентное железо в нерастворимое трехвалентное.

Для решения проблемы удаления марганца подходят те же самые методы, что и для железа.

Содержание в воде фтора может быть и вредным, и полезным. Все зависит от концентрации. Исследования показали, что концентрация фтора в питьевой воде около 1мг/л уменьшает возможность возникновения кариеса. Концентрация фтора более 4мг/л может быть причиной серьезного заболевания костей.

Как правило, почва содержит небольшое количество природных нитратов. Наличие нитратов в воде свидетельствует о том, что она загрязнена органическими веществами. В основном, вода, загрязненная нитратами, встречается в неглубоких скважинах и колодцах, но иногда такая вода бывает и в глубоких скважинах. Даже такая низкая концентрация нитратов, как 10-20 мг/л, может вызывать серьезные заболевания у детей, известны случаи летальных исходов.

Нитраты могут быть удалены из воды с помощью обратного осмоса.

Воду можно очищать от хлоридов и сульфатов с помощью обратного осмоса.

Существует несколько способов удаления из воды сероводорода. Большинство из них сводится к окислению и превращению газа в чистую серу. Потом, этот нерастворимый порошок желтого цвета удаляется фильтрованием. Для удаления очень низких концентраций сероводорода вполне достаточно фильтра с активированным углем. При этом, уголь просто адсорбирует газ на свою поверхность.

Одним из наиболее опасных типов промышленных отходов является фенол. В хлорированной воде фенол вступает в химические реакции с хлором и создает обладающие неприятным “медицинским” привкусом и запахом хлорфенольные соединения. При этом неприятный запах появляется при концентрациях фенола равных одной части на миллиард. Фенол и хлорфенольные соединения удаляются пропусканием воды сквозь активированный уголь.

Установлено, что основной радиационный фон на нашей планете (по крайней мере, пока) создается за счет естественных источников излучения. По данным ученых, доля естественных источников радиации в суммарной дозе, накапливаемой среднестатистическим человеком на протяжении всей жизни, составляет 87%. Оставшиеся 13% приходятся на источники, созданные человеком. Из них 11.5% (или почти 88.5% «искусственной» составляющей дозы облучения) формируется за счет использования радиоизотопов в медицинской практике. И только оставшиеся 1.5% являются результатом последствий ядерных взрывов, выбросов с атомных электростанций, утечек из хранилищ ядерных отходов и т.п.

Среди естественных источников радиации «пальму первенства» уверенно держит радон, обуславливающий до 32% общей радиационной дозы.

Радон очень хорошо растворяется в воде, и при контакте подземных вод с радоном они очень быстро им насыщаются. В случае, когда для снабжения дома водой используются скважины, радон попадает в дом с водой. Растворенный в воде радон действует двояко. С одной стороны, он вместе с водой попадает в пищеварительную систему. С другой стороны, когда вода вытекает из крана, радон выделяется из нее и может скапливаться в значительных количествах в кухнях и ванных комнатах. Концентрация радона в кухне или ванной комнате может в 30-40 раз превышать его уровень в других помещениях, например, в жилых комнатах. Ингаляционный способ воздействия радона считается более опасным для здоровья.

Мерой радиоактивности является активность радионуклида в источнике. Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени к величине этого интервала. В системе СИ измеряется в Беккерелях (Бк, Bq ), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м).

В Новосибирске уровень содержания радона в скважинных водах колеблется от 10 до 100 Бк/л, в отдельных районах (Нижняя Ельцовка, Академгородок и др.) доходя до нескольких сотен Бк/л. В российских Нормах Радиационной Безопасности (НРБ-99) предельный уровень содержания радона в воде, при котором уже требуется вмешательство, установлен на уровне 60 Бк/л (американские нормативы гораздо жестче – 11 Бк/л).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *