какая модель базы данных была предшественником реляционной
Реляционная модель данных
Реляционная модель данных (РМД) — логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка.
На реляционной модели данных строятся реляционные базы данных.
Реляционная модель данных включает следующие компоненты:
Кроме того, в состав реляционной модели данных включают теорию нормализации.
Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране. Некорректное и нестрогое использование термина «таблица» вместо термина «отношение» нередко приводит к недопониманию. Наиболее частая ошибка состоит в рассуждениях о том, что РМД имеет дело с «плоскими», или «двумерными» таблицами, тогда как таковыми могут быть только визуальные представления таблиц. Отношения же являются абстракциями, и не могут быть ни «плоскими», ни «неплоскими».
Для лучшего понимания РМД следует отметить три важных обстоятельства:
Строгое изложение теории реляционных баз данных (реляционной модели данных) в современном понимании можно найти в книге К. Дж. Дейта. «C. J. Date. An Introduction to Database Systems» («Дейт, К. Дж. Введение в системы баз данных»).
Наиболее известными альтернативами реляционной модели являются иерархическая модель, и сетевая модель. Некоторые системы, использующие эти старые архитектуры, используются до сих пор. Кроме того, можно упомянуть об объектно-ориентированной модели, на которой строятся так называемые объектно-ориентированные СУБД, хотя однозначного и общепринятого определения такой модели нет.
Реляционная модель данных: теоретические основы
Реляционная модель данных: кем, когда и для чего создана
В 2002 журнал Forbes поместил реляционную модель данных в список важнейших инноваций последних 85 лет.
Цели создания реляционной модели данных:
Структура данных в реляционной модели данных
Реляционная модель данных предусматривает структуру данных, обязательными объектами которой являются:
ID | Фамилия | Имя | Должность | г.р. |
1 | Петров | Игорь | Директор | 1968 |
2 | Иванов | Олег | Юрист | 1973 |
3 | Ким | Елена | Бухгалтер | 1980 |
4 | Сенин | Илья | Менеджер | 1981 |
5 | Васин | Сергей | Менеджер | 1978 |
Степень определяется количеством атрибутов, которое оно содержит
Соответствие между формальными терминами реляционной модели данных и неформальными:
Отношения и их реализация в реляционной модели данных
1) закрепление преподавателей за учебными курсами:
Это отношение определяет множество преподавателей, ведущих множество учебных дисциплин.
2) расписание занятий в группах:
Это отношение определяет множество аудиторий, в которых проводятся занятия по множеству учебных дисциплин для множества учебных групп.
Свойства отношений:
Виды отношений:
Ключи отношения в реляционной модели данных
Ключи отношения могут быть следующми:
Решение. Можно объявить первичным ключём таблицы «Наличие» составной ключ, состоящий из идентификатора аптеки и идентификатора препарата. Тогда в таблице невозможно повторение в разных записях сочетания аптеки и прапарата. Первичный ключ может быть не только простым, но и составным.
Целостность данных в реляционной модели данных
Понятия реляционной целостности:
Определитель NULL. Значение Null обозначает тот факт, что значение не определено. Null не принадлежит никакому типу данных и может присутствовать среди значений любого атрибута, определенного на любом типе данных. Двуместная «арифметическая» операция с Null даёт Null. Операция сравнения с Null даёт UNKNOWN.
Целостность сущностей. Требование целостности сущности означает, что первичный ключ должен полностью идентифицировать каждую сущность, а поэтому в составе любого значения первичного ключа не допускается наличие неопределенных значений. Значение атрибута должно быть атомарным.
Ссылочная целостность. Требование целостности по ссылкам состоит в том, что для каждого значения внешнего ключа, появляющегося в кортеже значения-отношения ссылающейся переменной отношения, либо в значении-отношении переменной отношения, на которую указывает ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть полностью неопределенным. Существуют правила удаления кортежа из отношения, на которое ведет ссылка.
Ссылочная целостность: удаление кортежа. Существует три подхода удаления кортежа из отношения, на которое ведет ссылка.
Ограничение удаления. Запрещается производить удаление кортежа, для которого существуют ссылки. Сначала нужно либо удалить ссылающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа.
Каскадное удаление. При удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.
Установка значения NULL. При удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится полностью неопределенным.
Пример 3. Есть база данных портала новостей. В ней есть таблица «Рубрики» (политика, экономика, спорт и т.д), есть таблица «Автора» (фамилии и имена авторов). Есть таблица «Тексты», в которой в каждой записи о тексте новости есть поля «Рубрика» (с идентификаторами рубрик из соответствующей таблицы) и «Автор» (с идентификаторами рубрик из соответствующей таблицы). Какими способами можно добиться, чтобы при удалении рубрики и автора была соблюдена ссылочная целостоность данных?
Решение. Первый способ: установить запрет на удаление рубрики или автора из соответствующих таблиц, в случае, если в таблицы «Тексты» есть ссылки на эту рубрику или на этого автора. Второй способ: задать автоматическое удаление из таблицы «Тексты» записей, в которой фигурируют эта рубрика или этот автор. Третий способ: в случае удаления рубрики или автора из соответствующих таблиц в ссылающихся кортежах таблицы «Тексты» значения идентификатора этой рубрики или этого автора становятся неопределёнными (NULL).
Реляционная модель данных
Информация, данные, информационные системы
Понятие отношения
Подходы к определению понятия отношения могут быть различными. Математически отношение может быть определено как множество кортежей, являющейся подмножеством декартова произведения фиксированного числа областей (доменов). В результате получаем, что в каждом кортеже должно быть одинаковое число компонент (атрибутов) и значение каждого из них выбирается из некоторого определенного домена.
Введем ряд математических определений, связанных с понятием отношения.
Определение 2. Схема отношения
Пусть — имена атрибутов. Схемой r отношения R называется конечное множество имен атрибутов
Определение 3. Отношение
Отношением со схемой r на конeчных множествах D1, D2,…, Dn называется подмножество R декартового произведения
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Реляционная модель данных
Впервые принципы реляционной модели были сформулированы в 1969—1970 годах Э. Ф. Коддом (E. F. Codd). Идеи Кодда были впервые публично изложены в статье «A Relational Model of Data for Large Shared Data Banks». Современную трактовку идей реляционной модели данных можно найти в книге К. Дж. Дейта. «C. J. Date. An Introduction to Database Systems»
Содержание
Состав частей реляционной модели данных
Наиболее распространенная трактовка реляционной модели данных, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.
Структурная часть
Структурная часть (аспект), отвечает за принцип построения структуры реляционной базы данных на нормализированном наборе n-арных отношений, в форме таблиц. Важно что реляционная база данных, структурно может представляться только в виде отношений.
Манипуляционная часть
Целостная часть
В целостной части реляционной модели данных фиксируются два базовых требования целостности, которые должны поддерживаться в любой реляционной СУБД. Первое требование называется требованием целостности сущностей. Объекту или сущности реального мира в реляционных БД соответствуют кортежи отношений. Конкретно требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом. Как мы видели в предыдущем разделе, это требование автоматически удовлетворяется, если в системе не нарушаются базовые свойства отношений.
Второе требование называется требованием целостности по ссылкам и является несколько более сложным. Очевидно, что при соблюдении нормализованности отношений сложные сущности реального мира представляются в реляционной БД в виде нескольких кортежей нескольких отношений. Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать).
Структура реляционной модели данных
При табличной организации данных отсутствует иерархия элементов. Строки и столбцы могут быть просмотрены в любом порядке, поэтому высока гибкость выбора любого подмножества элементов в строках и столбцах. Любая таблица в реляционной базе состоит из строк, которые называют записями, и столбцов, которые называют полями. На пересечении строк и столбцов находятся конкретные значения данных. Для каждого поля определяется множество его значений.
В реляционной модели данных применяются разделы реляционной алгебры, откуда и была заимствованна соответствующая терминология.В реляционной алгебре поименованный столбец отношения называется атрибутом, а множество всех возможных значений конкретного атрибута – доменом. Строки таблицы со значениями разных атрибутов называют кортежами. Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом). Так ключевое поле – это такое поле, значения которого в данной таблице не повторяется. В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей. Сложный ключ выбирается в тех случаях, когда ни одно поле таблицы однозначно не определяет запись.
Записи в таблице хранятся упорядоченными по ключу. Ключ может быть простым, состоящим из одного поля, и сложным, состоящим из нескольких полей. Сложный ключ выбирается в тех случаях, когда ни одно поле таблицы однозначно не определяет запись.
Кроме первичного ключа в таблице могут быть вторичные ключи, называемые еще внешними ключами, или индексами. Индекс – это поле или совокупность полей, чьи значения имеются в нескольких таблицах и которое является первичным ключом в одной из них. Значения индекса могут повторяться в некоторой таблице. Индекс обеспечивает логическую последовательность записей в таблице, а также прямой доступ к записи.
По первичному ключу всегда отыскивается только одна строка, а по вторичному – может отыскиваться группа строк с одинаковыми значениями первичного ключа. Ключи нужны для однозначной идентификации и упорядочения записей таблицы, а индексы для упорядочения и ускорения поиска.
Индексы можно создавать и удалять, оставляя неизменным содержание записей реляционной таблицы. Количество индексов, имена индексов, соответствие индексов полям таблицы определяется при создании схемы таблицы.
Индексы позволяют эффективно реализовать поиск и обработку данных, формирую дополнительные индексные файлы. При корректировке данных автоматически упорядочиваются индексы, изменяется местоположение каждого индекса согласно принятому условию (возрастанию или убыванию значений). Сами же записи реляционной таблицы не перемещаются при удалении или включении новых экземпляров записей, изменении значений их ключевых полей.
С помощью индексов и ключей устанавливаются связи между таблицами. Связь устанавливается путем присвоения значений внешнего ключа одной таблицы значениям первичного ключа другой. Группа связанных таблиц называется схемой данных. Информация о таблицах, их полях, ключах и т.п. называется метаданными.
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Реляционная база данных
Содержание
История
Реляционные системы берут свое начало в математической теории множеств. Эдгар Кодд, сотрудник исследовательской лаборатории корпорации IBM в Сан-Хосе, по существу, создал и описал концепцию реляционных баз данных в своей основополагающей работе «Реляционная модель для крупных, совместно используемых банков данных» (A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, июнь 1970).
Нечеткость многих терминов, используемых в сфере обработки данных, заставила Кодда отказаться от них и придумать новые или дать более точные определения существующим. Так, он не мог использовать широко распространенный термин «запись», который в различных ситуациях может означать экземпляр записи, либо тип записей, запись в стиле Кобола (которая допускает повторяющиеся группы) или плоскую запись (которая их не допускает), логическую запись или физическую запись, хранимую запись или виртуальную запись и т.д. Вместо этого он использовал термин «кортеж длины n» или просто «кортеж», которому дал точное определение.
Кодд предложил модель, которая позволяет разработчикам разделять свои базы данных на отдельные, но взаимосвязанные таблицы, что увеличивает производительность, но при этом внешнее представление остается тем же, что и у исходной базы данных. С тех пор Кодд считается отцом-основателем отрасли реляционных баз данных. Кодд сформулировал 12 правил для реляционных баз данных, большинство которых касаются целостности и обновления данных, а также доступа к ним.
Правила Кодда
Правило 0: Основное правило (Foundation Rule):
Система, которая рекламируется или позиционируется как реляционная система управления базами данных, должна быть способна управлять базами данных, используя исключительно свои реляционные возможности.
Правило 1: Информационное правило (The Information Rule):
Вся информация в реляционной базе данных на логическом уровне должна быть явно представлена единственным способом: значениями в таблицах.
Правило 2: Гарантированный доступ к данным (Guaranteed Access Rule):
В реляционной базе данных каждое отдельное (атомарное) значение данных должно быть логически доступно с помощью комбинации имени таблицы, значения первичного ключа и имени столбца.
Правило 3: Систематическая поддержка отсутствующих значений (Systematic Treatment of Null Values):
Неизвестные, или отсутствующие значения NULL, отличные от любого известного значения, должны поддерживаться для всех типов данных при выполнении любых операций. Например, для числовых данных неизвестные значения не должны рассматриваться как нули, а для символьных данных — как пустые строки.
Правило 4: Доступ к словарю данных в терминах реляционной модели (Active On-Line Catalog Based on the Relational Model):
Словарь данных должен сохраняться в форме реляционных таблиц, и СУБД должна поддерживать доступ к нему при помощи стандартных языковых средств, тех же самых, которые используются для работы с реляционными таблицами, содержащими пользовательские данные.
Правило 5: Полнота подмножества языка (Comprehensive Data Sublanguage Rule):
Система управления реляционными базами данных должна поддерживать хотя бы один реляционный язык, который (а) имеет линейный синтаксис, (б) может использоваться как интерактивно, так и в прикладных программах, (в) поддерживает операции определения данных, определения представлений, манипулирования данными (интерактивные и программные), ограничители целостности, управления доступом и операции управления транзакциями (begin, commit и rollback).
Правило 6: Возможность изменения представлений (View Updating Rule):
Каждое представление должно поддерживать все операции манипулирования данными, которые поддерживают реляционные таблицы: операции выборки, вставки, изменения и удаления данных.
Правило 7: Наличие высокоуровневых операций управления данными (High-Level Insert, Update, and Delete):
Операции вставки, изменения и удаления данных должны поддерживаться не только по отношению к одной строке реляционной таблицы, но и по отношению к любому множеству строк.
Правило 8: Физическая независимость данных (Physical Data Independence):
Приложения не должны зависеть от используемых способов хранения данных на носителях, от аппаратного обеспечения компьютеров, на которых находится реляционная база данных.
Правило 9: Логическая независимость данных (Logical Data Independence):
Представление данных в приложении не должно зависеть от структуры реляционных таблиц. Если в процессе нормализации одна реляционная таблица разделяется на две, представление должно обеспечить объединение этих данных, чтобы изменение структуры реляционных таблиц не сказывалось на работе приложений.
Правило 10: Независимость контроля целостности (Integrity Independence):
Вся информация, необходимая для поддержания целостности, должна находиться в словаре данных. Язык для работы с данными должен выполнять проверку входных данных и автоматически поддерживать целостность данных.
Правило 11: Независимость от расположения (Distribution Independence):
База данных может быть распределённой, может находиться на нескольких компьютерах, и это не должно оказывать влияния на приложения. Перенос базы данных на другой компьютер не должен оказывать влияния на приложения.
Правило 12: Согласование языковых уровней (The Nonsubversion Rule):
Если используется низкоуровневый язык доступа к данным, он не должен игнорировать правила безопасности и правила целостности, которые поддерживаются языком более высокого уровня.
Сущность реляционной базы данных
Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами.
Нормализация — это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных. Целью нормализации реляционной базы данных является устранение недостатков структуры базы данных, приводящих к избыточности, которая, в свою очередь, потенциально приводит к различным аномалиям и нарушениям целостности данных.Теоретики реляционных баз данных в процессе развития теории выявили и описали типичные примеры избыточности и способы их устранения. Реляционные хранилища обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости. Касаемо масштабируемости, реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере.
Особенностью реляционной базы данных является использование в ней реляционной модели данных и вытекающие из этого последствия:
В реляционной базе данных данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL). SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц.Такие запросы могут включать агрегации и сложные фильтры. Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции.
Реляционная система управления базой данных (РСУБД)
Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее. Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.
Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу. Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри.
Реляционная система управления базой данных содержит: