какая мощность передатчика мобильного телефона

Влияние на здоровье человека излучения сотового телефона

Учёными, исследующими свойства излучения мобильных телефонов, было выяснено, что перед сном мобильные аппараты лучше не использовать, поскольку радиоизлучение аппаратов вызывает продолжительную бессонницу и, в целом, нарушение сна, значительно сокращая его время. Как результат у людей часто возникают сильные головные боли и нестабильное состояние сознания, а также нередко возникновение меланхолии.

Данные исследования были стимулированы производителями мобильных телефонов, с тем, чтобы выявить все негативные эффекты их продукции и в дальнейшем устранить их. Результаты исследований показали, что общение по мобильному телефону перед сном создаёт эффект значительного удлинения перехода из состояния погружения в сон к непосредственно глубокому сну, что не даёт качественного отдыха человеческому организму.

Поскольку основной проблемой является ночное общение по мобильным телефонам среди молодёжи, то и нарушения сна чаще всего возникают среди подростков. Данный вывод был сделан на основании многочисленных опросов, и такая информация не может не пробудить тревогу за молодое поколение. Ведь зачастую успеваемость в учёбе зависит от качества сна, и если молодой организм накапливает усталость, это приводит к возникновению депрессий, рассеянности внимания, частым перепадам настроения и угнетённости сознания. При подобных проявлениях недостатка сна о хорошей успеваемости не может быть и речи, а, следовательно, качество образованности молодых людей может оказаться не на должном уровне.

Было так же выяснено, что подобными свойствами обладает только радиосигнал с частотой 884 MHz, создавая, некоторого рода, стресс для человеческого мозга, в результате чего не позволяет организму достичь полного расслабления. Состав исследовательской группы был довольно многонациональным, присутствовали учёные из Каролинского института и университета Упсалы, расположенных в Швеции, а также, были представители из Wayne State University, который находится в США, штате Мичиган.

Весь состав научной коллегии обладает достаточным авторитетом в научных кругах, чтобы не назвать результаты исследований голословными – обследования проводились на 36 мужчинах и 35 женщинах в возрастном диапазоне между 18 и 45 годами. Причём половина группы объектов исследований были действительно подвержены излучению, аналогичному тому, что издаёт мобильный аппарат, для других же только создавалась видимость подобного воздействия, следовательно, никто не знал, облучили его или нет.

Какая мощность излучения у сотового телефона?

Медики обнаружили, что загородные жители, часто говорящие по мобильному телефону, в несколько раз чаще подвержены опухоли головного мозга, чем городские жители. Если абонент находится далеко от базовой станции, то мощность его телефона максимальна. Если сотовый телефон принимает хороший и уверенный сигнал, то он работает на минимальной мощности.

Максимальная мощность излучения телефона: 0.2Вт для LTE(4G), 0.25Вт для UMTS(3G), 1Вт для GSM 1800МГц и 2Вт для GSM 900МГц, а при наличии репитера мощность излучения телефона снижается до 10-20 милливатт, что в 100 раз меньше!

Какое излучение от антенны вышки сотовой связи считается безопасным?

В России строительство базовых станций происходит по стандарту, который описан в СаНПиН 2.1.8/2.2.4. Предельно допустимая плотность потока энергии для частот на 900, 1800, 2100, 2600 МГц равна 10 мкВт/см2, или же 0,1 Вт/м2.

Зависимость плотности потока энергии от расстояния для типовой БС.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

Mощность излучения сотового репитера

Излучаемую репитером мощность можно сравнить с базой обычного квартирного радиотелефона – около 100 мВт, притом эта мощность делится на несколько антенн и антенны располагаются на достаточном от абонентов расстоянии. В свободном пространстве плотность электромагнитного потока от телефона убывает обратно пропорционально квадрату расстояния, и излучаемая мощность антенны репитера ничтожно мала. Если сравнить с примером выше, то уже на расстоянии 1 метра от репитера уровень сигнала будет в несколько раз ниже по СаНПиН.

Профессиональная установка усилителя сотовой связи и сервисных антенн позволяет создать в помещении равномерно распределенный сигнал от базовой станции той мощности, при которой вредное воздействие СВЧ-излучения от мобильного телефона будет минимальным, а сигнал будет достаточным. Таким образом, репитер снижает негативное воздействие телефона на здоровье человека, а также увеличивает время работы телефона от аккумулятора.

Источник

Сумбурная заметка о телефонах и активном отдыхе.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

Для многих туристов, охотников и других любителей активного отдыха важно иметь стабильную связь не только в авто, но и на стоянке/охотничьем домике/в туристическом лагере и.т.д. В районах со слабым покрытием сети, там где обычные современные телефоны будут беспомощны, автомобильный телефон с 8 ватт передатчиком будет единственным выходом (спутниковые трубки, как правило, сильно дороже). При этом желательно иметь возможность использовать телефон не только в авто, но и как переносной.

Для начала небольшой ликбез по стандарту GSM, мощности телефонов и дальности связи.
В России официально используются 2 стандарта GSM для обеспечения голосовой связи — GSM900 и GSM1800. Почему 2? Исторически все сети в РФ строились на GSM900, что позволяло с минимальными затратами обеспечить широкое покрытие сети. Рост количества абонентов заставил операторов пересмотреть свою стратегию и начать активно внедрять GSM1800, который имеет меньшую дальность, но более высокую пропускную способность, что важно для крупных городов. (Чем выше частота излучения, тем хуже проникающая способность радиоволн и тем меньше способность отражаться и огибать преграды.) При этом любой современный телефон имеет в приоритете gsm1800 сеть, но при слабом сигнале автоматически переключается на gsm900. Скорее всего от этого идут корни популярной в свое время байки про то, что в Европе телефон дольше работает чем в России. Там широкое распространение gsm1800 началось раньше чем у нас в стране и телефоны работали с меньшей мощностью.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

На данный момент GSM900 вышки устанавливаются только в местах с низкой плотностью трафика в сети (малонаселенная местность, трассы и.т.п.) при этом старые вышки никто не отключал, поэтому например в Москве можно спокойно использовать gsm900 телефон без потери связи.
Максимальная излучаемая мощность мобильных телефонов стандарта GSM-1800 — 1 Вт, для сравнения у GSM-900 — 8 Вт (на заре становления gsm была даже одна 10 ватт модель), что обеспечивает большую дальнобойность.

Стандартная дальность связи в GSM составляет до 35 км. При использовании режима extended cell возрастает до 75 км. Практически это достижимо только в море, пустыне и горах. В итоге, несмотря на громоздкость и низкую автономность на данный момент конкуренцию автотелефону с 8 ватт передатчиком может составить только спутниковая связь, которая будет стоить на несколько порядков дороже.

Несколько вариантов установки позволяющих совместить автомобильное и портативное использование:

1. Классический. Для этого потребуется собственно сам автотелефон с полным комплектом проводки, а также рама с аккумулятором и питанием для переносной версии.
Такой вариант имеет ряд минусов. Так каждый раз придется снимать и устанавливать трубку и головной блок для трансформации в носимый вариант, при этом велика вероятность того, что может пострадать разъем на проводке или блоке. Из плюсов стоит отметить полную функциональность, включая громкую связь и аккуратный внешний вид салона.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

2. Телефон постоянно находится в переносной версии и в авто подключается к прикуривателю. В таком случае не нужна проводка, но практически исчезает возможность пользоваться телефоном в авто. Часто этот вариант кажется предпочтительным из-за простоты монтажа и минимального количества нужных аксессуаров, но с точки зрения автомобильного использования он имеет массу недостатков. Например, возникает проблема размещения и крепления этой громоздкой конструкции в передней части салона.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

3. Есть компромиссный вариант позволяющий совместить удобство автомобильного использования с простотой монтажа/демонтажа. Для него нам потребуется автотелефон в носимом исполнении (с рамой и аккумулятором), питание от прикуривателя или бортовой сети, удлинитель трубки и ее держатель.
Схема установки будет выглядеть следующим образом:
• Трубка на держателе крепится в передней части салона и соединяется с блоком удлинителем.
• Cам блок на раме крепится в легкодоступном месте в багажнике или под сидением (есть риск залива водой).
Для снятия/установки потребуется лишь отключение трубки и питания. При таком подключении также нет нужды в полном комплекте проводки. Из минусов стоит отметить отсутствие полноценной громкой связи (динамик и микрофон подключаются только через проводку) и необходимость подвода питания к месту установки блока.

Для использования в автомобиле и в переносном виде подходят следующие модели.
Alcatel 9109 (8 ватт)
Siemens P1 (5 ватт)
Motorola international 1000/2000/2200/2500/2700 и их клоны (8 ватт)
Orbitel 863 (901)
Aeg cd900 (10 ватт)
Aeg cd901/902/930 (8 ватт)

Примечание: Все автотелефоны Nokia не имели переносных версий. Чисто технически можно самостоятельно сделать подобие рамы с аккумулятором, но в условиях все еще широкого выбора других моделей это нецелесообразно.

Для максимального улучшения приема в переносном варианте можно использовать вынос антенны через удлинитель антенного кабеля.

Также есть вариант покупки относительно компактного носимого телефона с мощностью 8 ватт. Единственными такими телефонами были Motorola International 3200/3300 и их клоны.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

Минусом такого решения будет высокий уровень излучения. Это не шутки, после продолжительного разговора вполне может появиться головная боль. Во Франции и Бельгии эти телефоны даже было запрещено продавать, поэтому на их рынки шли обрезанные версии в 2 ватт передатчиком, при этом автомобильные 8 ватт телефоны там были разрешены. Основной причиной было то, что в автотелефонах использовался принцип разделения блоков и передатчик находился на достаточном расстоянии от головы пользователя. Тем не менее для непостоянного использования эти модели вполне пригодны и в качестве носимого варианта не имеют альтернатив в силу своей компактности и малого веса относительно классических автотелефонов.

Источник

Усилители мобильной связи для Вас!

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

Мощность мобильного сигнала

Мощность передачи мобильных сигналов является величиной, которую измеряют или прогнозируют в точке приема, то есть на значительном расстоянии от передающей антенны. Эта величина также выражается уровнем получаемого сигнала или интенсивностью оцениваемого поля. Очень часто, она измеряется как сила приема сигнала электрического поля в вольтах на расстояние или как мощность сигнала, получаемого принимающей антенной. Передатчики более высокой мощности, например, в радиовещании, используют величину дБ-милливольт на метр (дБмВ/м). А в устройствах, которые требуют намного более низкой мощности сигнала, такие как мобильные телефоны, эта мощность чаще всего выражается как дБ-микровольта метр (дБмкВ/м) или в децибелах как уровень приема в один милливатт (например – 80дБм).

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона

В сотовых сетях радиус действия и базовых станций весьма ограничен, следовательно, мощность работы передатчиков радиостанций сравнительно невысока.

Передатчики самих же мобильных телефонов стандарта GSM 900, как правило, обладают максимальной мощностью в 2 Вт, а устанавливаемых на автомобили — около 8 Вт. Между тем в стандарте определяется 4 класса мощности от 800 мВт до 8 Вт.

Мощность передатчиков телефонов, которые работаю на стандарте GSM 1800 практически 2 раза меньше, что не может не сказываться на потребляемой ими энергии, и разумеется, на автономности работы «карманных» моделей. Однако радиус действия таких моделей значительно меньше, чем радиус действия передатчиков сотовых телефонов стандарта GSM 900, который при прочих равных условиях примерно в 16 раз больше.

Сложнее привести порядок величин для мощностей стационарных станций, поскольку операторы стараются держать это в секрете. Тем не менее можно сказать, что промежуток значений этих мощностей достаточно большой, учитывая разнообразие условий распространения сигналов на местности.

Можно догадываться, что мощность средней передающей станции, которая paботает в городских условиях и покрывает зону радиусом приблизительно в 2 км, составляет несколько десятков ватт на сектор (10 Вт = +40 дБмВт). Эта величина имеет место на выходе передатчиков, поскольку благодаря направленному действию антенны мощность излучения (эквивалентная изотропно-излучаемая мощность — ЭИИМ ) в заданном направлении может достигать сотен ватт (100 Вт = +50 дБмВт)! Приведенные выше цифры довольно близки к мощности излучения СВЧ печи, работающей с открытой! дверцей, и все-таки не сравнимы с сотнями киловатт, излучаемыми в диапазоне FM основными телевизионными и радиовещательными башнями (начиная с Эйфелевой башни, наиболее «грязной» в этом отношении).

В сельской местности эти значения могут быть еще выше за счет установки дополнительных усилителей для увеличения дальности работы.

При отсутствии препятствий ослабление сигнала при распространении возрастает пропорционально квадрату расстояния, увеличиваясь, таким образом, на 6 дБ каждый раз, когда расстояние удваивается.

Следовательно, если спуститься в подземный гараж или в подвал, то ослабление сигнала будет таким же, как и при удалении на расстояние 30 км в пределах прямой видимости.

В следствии с исключительным разнообразием условий распространения сигналов было принято решение, что мощности передатчиков как базовых, так и мобильных станций будут постоянно регулироваться к текущим условиям (то есть выходная мощность может увеличиваться или уменьшаться). Этим и объясняется тот факт, что автономность работы мобильных телефонов в режиме «разговор» сильно зависит от условий распространения сигнала, и реально результаты часто оказываются не столь блистательными, как было обещано производителем.

Учитывая выше приведенные цифры, можно сказать, что в идеальных условиях радиус действия будет значительно выше среднего.

Например, при осуществлении связи с моря размер покрываемой береговой зоны такой, что система GSM оказывается значительно эффективнее, чем государственная служба радиотелефонной связи диапазона VHF (ОВЧ). Но из этого не следует делать вывод, что для обеспечения безопасности на борту корабля достаточно мобильного телефона, т.к. его сигналы не принимаются другими судами, способными оказать помощь. К тому же определить текущее местоположение мобильного телефона гораздо сложнее, чем место расположение радиотелефона. В открытом море не стоит надеяться на радиус действия 50 или даже 80 км, который при хороших условиях обеспечивается станциями мощностью в 25 Вт. Однако в ясную погоду на побережье Нормандии отлично принимаются сигналы базовых станций четырех английских сетей GSM, расположенных на расстоянии более 120 км.

Этот как будто парадокс вызван принципом временного мультиплексирования ТБМД в результате применения которого абсолютный предел радиуса действия системы составляет приблизительно 35 км. Выше объяснялось о том, что сеть связывается с мобильным телефоном только в течение интервалов времени длительностью 0,577 мс. При скорости 300 000 км/с радиоволнам потребуется 0,233 мс, чтобы преодолеть путь в 70 км (туда и обратно) между базовой станцией и мобильным телефоном. За пределами радиуса действия 35 км пакеты битов, передаваемые сотовым телефоном, достигают базовой станции в тот момент, когда она уже прекратила их ожидание и перешла на прием сигнала от другого сотового телефона. Особенно поразительно, когда при постепенном удалении от побережья связь просто навсего резко обрывается, даже если только что она была превосходного качества и дисплей показывает, что режим приема остается оптимальным.

Похожее явление может наблюдаться и на суше, в местах, где местность характеризуется неровным рельефом. Так, сигнал станции, расположенный на расстоянии больше 35 км, принимается «четко и ясно» в зоне, которая должна была бы считаться полностью вне диапазона покрытия, поскольку связь с ней неосуществима.

Кроме того, может случиться, что, набрав номер 112, чтобы связаться со службой спасения, вы попадаете, например, к пожарным другого департамента. Это совершенно нормальное явление, когда лучше принимается сигнал базовой станции, расположенной на расстоянии 20 или 30 км, чем на расстоянии 2 км, но находящейся за холмом.

Использование различных технических методов позволяет почти удвоить максимальный радиус действия системы до расстояния 60 или 70 км, но это может быть сделано только за счет уменьшения пропускной способности базовой GSM станции. В Австралии уже были проведены проверки, подтверждающие данные расчеты. Известно, что некоторые операторы пробовали проводить аналогичное опыты, используя телефоны-автоматы, установленные на паромах.

И наконец, можно вспомнить о «сюрпризах» совсем другого характера, которые могут происходить из-за отражений радиоволн от различных препятствий, включая пролетающие самолеты. Временами бывает, что мобильный телефон приступает идеально работать там, где это совершенно не предвиделось, например у подножия высокой скалы, но только на протяжении нескольких секунд. В этом случае смещения антенны телефона на несколько сантиметров может быть вполне хватает, чтобы слышимость резко ухудшилась или прервалась связь.

Несмотря на то, что сеть вышек-ретрансляторов покрывает территории многих государств по всему миру, всё же остается большое количество зон, которые не входят в зону их покрытия, то есть которые не могут воспользоваться преимуществами хорошего приема. Некоторые сельские районы вряд ли когда-либо будут обеспечены ретрансляторами для качественного приема, поскольку себестоимость возведения сотовой башни слишком высока, чтобы устанавливать её для небольшого количества потребителей услуг связи. Даже в зонах качественного приема часто бывает так, что в подвалах и внутри больших зданий качество приема оставляет желать лучшего.

К ухудшению качества приема также может привести деструктивное влияние на сигнал со стороны вышек других операторов в городских зонах или свойства строительных материалов, которые используются в некоторых зданиях и способны вызывать резкое ослабление даже хорошего сигнала. В больших зданиях, такие как склады, больницы, заводы часто нет достаточного сигнала, который бы позволил использовать мобильный телефон на расстоянии дальше, чем несколько метров от наружных стен.

Это особенно актуально для сетей, которые работают на более высоких частотах, поскольку такие сигналы затухают быстрее, когда сталкиваются с препятствиями, даже несмотря на то, что они могут использовать отражение и преломление, чтобы обойти препятствие.

Источник

Излучение телефонов: мифы и легенды — и отчего зависит мощность передатчика телефона

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рассмотрим, насколько безопасно пользоваться такими штуками

Тема излучения базовых станций вызвала явный интерес читателей. Однако базовые станции, как правило, находятся далеко от нас — висят на вышках и зданиях. А мобильные телефоны, планшеты и другие мобильные терминалы, которые тоже являются источниками радиоизлучений, мы носим с собой и даже прикладываем к голове во время разговора. К сожалению, тема излучения мобильных телефонов уже обросла множеством ложных мифов и легенд, которые порождены иногда невежеством или некомпетентностью, а иногда и созданы намеренно, возможно даже с неблагородными целями.

Сначала рассмотрим нормативы на излучение мобильных терминалов GSM-UMTS-LTE, и как происходит управление выходной мощностью в сетях, основанных на этих технологиях радиодоступа. А затем уже обратимся к рассмотрению мифов и легенд, которые возникли и созданы вокруг этой темы.

Поскольку и нормативы на выходную мощность, и управление выходной мощностью различны для разных технологий радиодоступа, рассмотрим каждую технологию отдельно.

Чтобы не утонуть в мелких деталях, которые важны лишь для специалистов, я затрону только наиболее важные моменты.

В стандартах GSM 05.05 и 3GPP-ETSI TS 45.005 предусмотрены несколько классов мобильных терминалов с разной максимальной выходной мощностью:

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 1. Таблица выходных мощностей мобильных терминалов GSM.

Однако на практике, в настоящее время мобильные терминалы выпускаются только с выходной мощностью до 2 Вт в диапазоне GSM 900, и до 1 Вт в диапазоне GSM 1800 (который по старой памяти называют еще и DCS 1800).

Уместно ещё вспомнить, что в сети GSM используется частотно временной принцип разделения каналов (FDMA/TDMA). Передатчик мобильного терминала излучает в определенной полосе частот, но излучает не непрерывно, а лишь в течение определенных интервалов времени (таймслотов). В режиме разговора, излучение происходит лишь в один интервал из 8 (или из 16, если используется режим Half Rate), а значит усредненная выходная мощность терминала, для наиболее распространенных устройств не будет превышать 250 (125 для HR) и 125 мВт (63 для HR) в диапазонах GSM 900 и GSM1800 соответственно.

Терминалы с более высокими значениями выходной мощности (до 8 Вт) раньше ставили на автомобили, где проблема с запасом энергии и длительностью автономной работы от батареи не столь остры, как для носимых устройств, зато можно обеспечить связь на большем удалении от базовых станций, что важно в сельской местности. Но по мере улучшения покрытия территории сотовыми операторами необходимость в более мощных передатчиках начала уменьшаться, а носимые телефоны отвоёвывали всё большую долю рынка. К тому же, сотовые операторы с помощью параметров настройки в сети ограничивали максимальную выходную мощность, с которой может работать мобильный терминал, на уровне носимых устройств, что делало бессмысленным использование телефонов с более мощными передатчиками. В результате в последнее время новых устройств с большими выходными мощностями на рынке практически не наблюдается. Устройства с меньшей выходной мощностью (0,8 Вт и 0,25 Вт соответственно) на рынке тоже практически отсутствуют, хотя иногда производители GSM-трекеров (устройств для отслеживания местоположения объектов) заявляют о такой выходной мощности, что в принципе должно увеличить длительность их автономной работы при малых габаритах. Однако на практике такие выходные мощности не всегда подтверждаются.

Кроме ограничения на максимальную выходную мощность, стандарты предусматривают возможность регулирования выходной мощности передатчика терминала GSM по командам базовой станции с шагом 2 дБ.

Управление выходной мощностью передатчика мобильного терминала со стороны базовой станции имеет несколько сторон.
Прежде всего, каждая базовая станция GSM на канале управления передает «системную информацию», в состав которой входит параметр MS_TXPWR_MAX_CCH, указывающий телефону максимальную выходную мощность, которую мобильный терминал может использовать в начале сеанса связи до тех пор, пока БС не примет на себя управление выходной мощностью передатчика терминала. Настройка именно этого параметра сотовыми операторами сделала бессмысленным изготовление телефонов с мощными передатчиками.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 2. Регулирование выходной мощности передатчика телефона GSM в хороших условиях связи.

Из графика видно, что после непродолжительной работы на максимальной выходной мощности в самом начале сеанса связи, мобильный терминал, работающий в диапазоне GSM 900, по командам базовой станции достаточно быстро снизил максимальную выходную мощность с 33 дБм (2 Вт) до 7 дБм (5 мВт).

Кстати, многие наверняка слышали уменьшающиеся по громкости помехи — трели, которые издают радиоприемники и иные электронные устройства, находящиеся рядом с сотовым телефоном GSM непосредственно перед тем, как телефон начинает звонить. Эти звуки появляются в результате преобразования сигналов передатчика телефона в транзисторах и иных компонентах с нелинейными вольт-амперными характеристиками и затухают по мере того, как БС уменьшает выходную мощность передатчика телефона.

Конечно, в случае ухудшения сигнала в приемнике БС, она обязательно скомандует терминалу увеличить выходную мощность, и далее будет регулировать ее так, чтобы поддерживать оптимальные условия передачи информации, что хорошо видно на следующей картинке. Когда мобильный терминал начал перемещаться в место совсем плохими условиями связи, БС командами постепенно увеличила выходную мощность до максимальной.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 3. Регулирование выходной мощности передатчика телефона GSM, перемещаемого из места с хорошими условиями связи в место с плохими условиями связи.

Выходные мощности мобильных терминалов UMTS регламентируются в TS 25.101:

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 4. Выходные мощности передатчиков мобильных терминалов UMTS.

Наиболее распространены сейчас мобильные терминалы UMTS, соответствующие по выходной мощности 3-му классу. В переводе на более привычные единицы, выходная их мощность составляет 250 мВт (1/4 Ватта).

Однако в сетях UMTS управление выходной мощностью мобильных терминалов происходит иначе, чем в сетях GSM. Мобильные терминалы UMTS, обслуживаемые в пределах одного и того же сектора, принимают и передают информацию в одной и той же полосе частот. Если бы мобильный терминал UMTS действовал так же, как и в сети GSM, то в начальный момент он создавал бы очень сильные помехи, мешающие БС принимать сигналы других терминалов, обслуживаемых в той же полосе частот. Чтобы поддерживать наименьший уровень помех на входе приемников БС, в UMTS предусмотрены более строгие требования к управлению выходной мощностью терминалов. Это касается и точности регулирования выходной мощности (шаг изменения может достигать 1 дБ по сравнению с 2 дБ в GSM), так и частоты регулировки – в UMTS она равна 1500 раз в секунду.

Чтобы не создавать помехи на начальной стадии установления соединения, передача начинается с небольшого уровня, который рассчитывается мобильным терминалом исходя из уровня принимаемого сигнала базовой станции – чем выше уровень принимаемого сигнала, тем меньше выходная мощность терминала при начале сеанса. Если базовая станция не ответила, то мобильный терминал повторяет запрос с чуть более высоким уровнем сигнала, пока не получит отклик БС или не исчерпает максимальное число попыток, предписанное базовой станцией в системной информации. После установления соединения уже БС своими командами тщательно регулирует выходную мощность передатчика терминала UMTS, поддерживая ее на минимально необходимом уровне.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 5. Регулирование выходной мощности передатчика телефона UMTS.

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 6. Статистика выходных мощностей передатчиков телефонов UMTS в условиях городской застройки.

25 мВт).
Учитывая такую разницу в выходных мощностях передатчиков в сетях GSM и UMTS, сильно озабоченные своим здоровьем абоненты могут сделать правильные выводы о том, стоит ли переключать свои телефоны в режим «GSM Only». 🙂

Выходные мощности мобильных терминалов, работающих в сетях LTE, регламентируются в стандарте 3GPP-ETSI TS 36.101, причем разнообразие вариантов максимальных выходных мощностей передатчиков выродилось практически в один «Class 3» с +23 дБм ± 2 дБ. (200 мВт).
Теоретически возможен вариант терминалов «Class 1» с + 31 дБм ± 2 дБ, однако он предусмотрен только в одном частотном диапазоне (Band 14), использование которого в России не разрешено.

К сожалению картинок, иллюстрирующих регулирование выходной мощности передатчика мобильного терминала LTE, пока получить не удалось, но принцип управления выходной мощностью в LTE, где терминалы также работают в одной полосе частот, похож на UMTS. Мобильный терминал начинает сеанс связи с небольшой выходной мощности, рассчитанной исходя из уровня предписанного БС и прогнозируемого затухания сигнала на пути до БС. Если ответ на запрос не получен, то терминал повторяет запросы, постепенно увеличивая выходную мощность, до получения ответа БС или исчерпания максимально разрешенного числа попыток. После установления связи, БС принимает на себя управление выходной мощностью передатчика терминала и может отсылать команды управления до 1000 раз в секунду.

В LTE становятся актуальными темы агрегации частот и MIMO (Multiple Input, Miltiple Output) – использование нескольких параллельно работающих каналов. Однако на тему выходной мощности передатчиков мобильных терминалов это радикального влияния не окажет. При использовании этих режимов максимальная выходная мощность должна быть равна сумме выходных мощностей на антенных разъемах каждого канала.

Выходные мощности вспомогательных передатчиков

Помимо основного передатчика современные мобильные терминалы могут иметь в своем составе устройства Bluetooth и Wi-Fi, которые тоже могут излучать радиосигналы, поэтому в контексте темы уместно обратить внимание и на эти источники радиоизлучений.

Bluetooth

Спецификации Bluetooth можно найти на сайте организации (https://www.bluetooth.org/en-us/specification/adopted-specifications).
Они предусматривают работу в диапазоне частот, выделенном для промышленных, научных и медицинских целей (ISM) 2.400-2.4835 ГГц, и три класса устройств по уровням выходной мощности передатчика:

какая мощность передатчика мобильного телефона. Смотреть фото какая мощность передатчика мобильного телефона. Смотреть картинку какая мощность передатчика мобильного телефона. Картинка про какая мощность передатчика мобильного телефона. Фото какая мощность передатчика мобильного телефона
Рисунок 7. Выходные мощности передатчиков Bluetooth.

Однако в российских требованиях к мобильным терминалам GSM-UMTS-LTE разрешенная выходная мощность дополнительных передатчиков (в том числе и Bluetooth) ограничена уровнем 2,5 мВт, то есть вторым классом.

Хотя устройства Bluetooth могут использовать разные способы модуляции, указанные выше значения выходных мощностей не должны превышаться в любых случаях.

Регулировка выходной мощности передатчика в обязательном порядке требуется от устройств Class 1, и только при работе на уровнях выше +4 дБм (2,5 мВт), однако может опционально присутствовать и в устройствах других классов. Регулировка должна быть монотонной с шагом от 8 до 2 дБ. Назначение такой регулировки – предотвратить перегрузку входных каскадов находящегося рядом устройства-партнера, и оптимизировать расход энергии батареи.

Таким образом, максимальные выходные мощности устройств Bluetooth во многих случаях ниже, чем выходные мощности передатчиков для мобильной связи, если только, в руки к вам не попало устройство, купленное в стране, где такие ограничения не действуют, или завезенное в Россию «серым» путем.

Стандарты на устройства Wi-Fi (IEEE 802.11 a/b/g/n) предусматривают меньшее разнообразие при управлении выходной мощностью передатчиков устройств. К тому же, на требования, установленные в самих стандартах, накладываются ограничения, установленные региональными (например, для Европы) и национальными (российскими) нормами.

В европейских требованиях выходная мощность передатчиков абонентских терминалов Wi-Fi ограничена значением 100 мВт (+20 дБм).
В российских нормах присутствует правовая коллизия. С одной стороны, во всех Правилах применения абонентских терминалов, установленных для сетей GSM, UMTS и LTE установлено ограничение на выходную мощность вспомогательных передатчиков, работающих в диапазоне 2.400-2.4835 ГГц, на уровне не более 2,5 мВт.

Но с другой стороны, в реальных абонентских терминалах (телефонах, роутерах и т.п.) выходные мощности передатчиков Wi-Fi соответствуют европейским ограничениям и обычно, по сертификационным документам не превышает 60… 70 мВт.

Реальные выходные мощности дополнительных передатчиков Bluetooth и Wi-Fi, встроенных в мобильные терминалы GSM-UMTS-LTE будет зависеть от режима их работы.

В режиме «клиента» устройство включает передатчик лишь в отведенные интервалы времени для передачи информации на другие устройства. Таким образом, средняя выходная мощность передатчика в режиме «клиента» в среднем будет заметно ниже, чем в режиме «мастера».
Поскольку предсказать среднюю выходную мощность в реальных условиях использования устройств Bluetooth и Wi-Fi затруднительно, будем ориентироваться на максимальные значения, как на наихудший вариант.

После того, как мы разобрались с возможными значениями выходных мощностей терминалов, взаимодействующих с разными сетями радиодоступа, давайте проанализируем некоторые мифы и легенды, существующие вокруг выходной мощности терминалов.

Можно ли узнать текущее значение уровня выходной мощности своего телефона и уровень принимаемого телефоном сигнала?
Обычному пользователю доступна очень условная информация об уровне принимаемого сигнала, в виде отображения нескольких «палок» или «точек», увеличение количества которых соответствует большему уровню принимаемого сигнала. Но отображение уровня принимаемого сигнала не регламентируется стандартами, поэтому на устройствах разных производителей одно и то же количество «палок» может соответствовать разным уровням принимаемого сигнала. А информация о выходной мощности передатчика обычно пользователю вообще недоступна.

Но иногда такая возможность появляется, если в телефоне включена встроенная в программное обеспечение функция нетмонитора, или в смартфон установлена специальная программа, способная показывать значение выходной мощности передатчика. Уровень принимаемого сигнала БС предоставляют практически все программы подобного рода.

Что касается выходной мощности собственного передатчика, то такая информация встречается нечасто, главным образом, в программах, предназначенных для профессионального использования. Причем, чаще всего отображается не само значение выходной мощности в милливаттах или дБм, а указывается условный номер уровня выходной мощности. В этом случае для выяснения реальной выходной мощности пользователю потребуется таблица пересчета условного номера в значение выходной мощности, что для профессионалов не представляет проблемы.

Радиоизлучение телефонов во время разговоров греет мозг!
В попытках убедить в этом снимали даже видеоролики, показывающие, что излучением телефонов можно сварить яйцо.
Но давайте трезво проанализируем ситуацию и для начала обратимся к цифрам.

Предположим, что в режиме максимальной выходной мощности все 0,25 Вт не излучаются в окружающее пространство, а преобразуются в тепло, нагревая голову, и утечка этого тепла отсутствует. Например, как будто источник излучения находится в центре головы-термоса. Тогда за 600 секунд разговора на нагрев головы будет использовано (0,25 Вт * 600 сек) 150 Джоулей, или 35,82 калории. Такой энергии хватит на то, чтобы нагреть 35,82 г воды на 1 градус. Если посчитать голову за 4 литра воды, то такой энергии излучения телефона хватит для того, чтобы нагреть «голову» менее чем на 0,01 градуса.

Однако, из-за того, что тело и голова человека представляют собой полупроводящее вещество (много жидкости с растворенными солями), то внутрь тела проникает лишь очень небольшая часть излучения и на небольшую глубину. Основная же часть излучения телефона, находящегося вблизи тела человека, от него отражается!

Таким образом, даже расчеты баланса энергии показывают, что нагрев головы излучением телефона является чистым вымыслом. Откуда же возникает ощущение нагрева головы?

Во время разговора в телефоне работает не только передатчик, но и много других электронных компонентов. При этом только часть энергии, потребляемой от батареи, преобразуется в излучаемый радиосигнал, а существенная часть выделяется в виде тепла, точно так же, как и в любом компьютере, где во время работы греются электронные компоненты. Не зря ведь на процессоры цепляют радиаторы. По приблизительным оценкам, в тепло может преобразоваться около половины энергии, потребляемой телефоном от батареи. В телефонах отвод тепла от нагревающихся деталей затруднен, но в конечном итоге тепло выходит на поверхность корпуса, нагревая его. При тестировании USB-модемов мы наблюдали, как в неудачных конструкциях температура деталей в районе SIM-карты достигала 85 градусов. А во время длительного разговора по телефону человек обычно ещё плотно прижимает телефон рукой к уху, улучшая тепловой контакт с ухом/головой и одновременно ухудшая рукой отвод тепла от поверхности корпуса телефона. Через этот контакт тепло и передается от постепенно нагревающегося корпуса к голове.
Если приложить к уху нагретый утюг, то ощущение тепла может оказаться еще более впечатляющим, но на вредное радиоизлучение утюга народ особо не жалуется.

«Телефон излучает на максимальной мощности во время поиска сети»
Это довольно распространенное заблуждение, которое, к сожалению, встречается не только в рассуждениях в Интернете, но и в печатной литературе.

Но нелепость этого становится достаточно очевидной, если задуматься о том, а для кого терминал должен излучать сигнал с высокой мощностью, с какой целью? Ведь в это время терминал ищет сигналы базовых станций, а не пытается привлечь внимание базовых станций к себе! Так зачем понапрасну тратить энергию батареи на безадресное излучение передатчика в никуда?

На самом деле, во время поиска сети в мобильном терминале передатчик молчит, а активно работает только приемник, потребляющий лишь чуть больше энергии, чем в режиме ожидания. Убедиться в том, что при поиске сети передатчик не работает на максимальной мощности можно и экспериментально. Полностью зарядите батарею телефона, и положите телефон в плотно закрытую жестяную банку. Она будет экранировать сигналы базовых станций, и заставит телефон начать поиск сети. Для надежности экранирования можно сделать «матрешку» из нескольких банок, вложенных одна в другую.

Посмотрите, сколько проработает телефон до автоматического выключения вследствие разряда батареи, и сравните это значение с тем, сколько времени по обещаниям производителя телефон должен проработать в режиме разговора. Вы легко убедитесь, что телефон проработает в режиме поиска сети (внутри экранирующей банки) значительно дольше, чем в режиме разговора, хотя и меньше, чем указывает производитель для режима ожидания.

Иногда встречаются рекомендации выключать телефон на время поездки в метро, мотивированные как раз «заботой о здоровье», чтобы не подвергать себя воздействию излучения телефона. Смысла в выключении телефона в метро мало, потому что, во-первых, сейчас во многих местах телефон может нормально работать и в метро, а во-вторых, даже потеряв сеть, телефон излучать и вредить здоровью не будет.

Устройства для защиты от вредного излучения телефона
Учитывая приведенные выше расчеты, сама по себе тема необходимости дополнительной защиты выглядит странновато. Ведь устройства мобильной связи проходят сертификацию по защите здоровья пользователей. Тем не менее, попытки продать пользователям мобильных телефонов различные «снадобья», надежно защищающие от вредного излучения телефонов, отмечались многократно.

Я видел несколько вариантов наклеек, которые предлагалось размещать под батареей телефона или на задней крышке телефона. Производители обещали снижение излучения аж на 99,9%.

Однако опыт работы с экранированными помещениями, и измерения степени затухания радиосигналов, которые такие помещения обеспечивают, показывают, что даже металлическая комната, выполненная путем сварки из стали толщиной 4-6 мм, в случае наличия дефектов сварных швов, щелей в дверных проемах, или утечках в фильтрах, через которые в комнату вводятся проводные коммуникации, не сможет обеспечить такого уменьшения сигнала, как заявляют производители чудо-наклеек.

А результаты измерений, якобы подтверждающие эффективность уменьшения поля «чудо-наклейками», чаще всего или выполнены технически неграмотно, или сфальсифицированы. По сути дела, это мошенничество, попытки заработать денег на фобиях людей, не разбирающихся в вопросе.

Кстати, через несколько лет, после того, как кто-то из импортеров предлагал продавать в офисах «Билайн» наклейки для защиты от излучения телефонов, я увидел в Интернете, что хозяева «конторы» — производителя были осуждены в США за мошенничество.
Некоторые дельцы пытаются продавать подобного рода наклейки, не как экранирующие устройства, а как «модифицирующие электромагнитные поля», что не меняет в корне их сущности – попытки вытянуть деньги, спекулируя на опасениях людей.
Ну, а целесообразность использование шапочек из фольги уже обсуждалась, и является скорее вопросом веры, чем реальной пользы.

Использование гарнитуры (проводной или Bluetooth), как средства защиты от излучения телефона
Принимая во внимание расчеты теплового воздействия излучения передатчиков телефонов, становится понятным, что мотивом для пользования гарнитурами должны быть не столько защита от вредного воздействия излучения телефона, а в первую очередь удобство и, что важнее, безопасность при вождении автомобиля! Ведь при обычном пользовании телефоном во время вождения автомобиля водитель вынужден держать его рукой, что ограничивает его возможности по управлению машиной. Ведь даже автомобиль с автоматической коробкой передач не исключает необходимости в определенных условиях выполнять действия одновременно двумя руками. Что уж говорить о вождении автомобилей с механической коробкой передач.

Как пользователь может уменьшить выходную мощность передатчика телефона?
После информации о том, что выходной мощностью передатчика телефона во время сеансов связи управляет базовая станция, вопрос, на первый взгляд выглядит странно. Тем не менее, у пользователя есть возможности влияния на выходную мощность передатчика телефона!

Вспомним о том, что при регулировании выходной мощности базовая станция стремится поддерживать уровень принимаемого ею сигнала от мобильного терминала в оптимальных пределах. А уровень принимаемого базовой станцией сигнала зависит и от мощности радиосигнала, излучаемого телефоном, и от затухания радиосигнала на пути от передатчика мобильного терминала до входа приемника базовой станции. Уменьшая затухание радиосигнала на пути от телефона до базовой станции, пользователь может уменьшать выходную мощность передатчика телефона, требуемую для получения нужного сигнала на входе приемника БС.

Чтобы уменьшить затухание сигнала нужно стараться соблюдать достаточно простые правила, о которых я уже писал ранее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *