какая может быть вероятность
Значение слова «вероятность»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Исследование вероятности с математической точки зрения составляет особую дисциплину — теорию вероятностей. В теории вероятностей и математической статистике понятие вероятности формализуется как числовая характеристика события — вероятностная мера (или её значение) — мера на множестве событий (подмножеств множества элементарных событий), принимающая значения от
соответствует достоверному событию. Невозможное событие имеет вероятность 0 (обратное вообще говоря не всегда верно). Если вероятность наступления события равна
, то вероятность его ненаступления равна
. В частности, вероятность
означает равную вероятность наступления и ненаступления события.
Классическое определение вероятности основано на понятии равновозможности исходов. В качестве вероятности выступает отношение количества исходов, благоприятствующих данному событию, к общему числу равновозможных исходов. Например, вероятность выпадения «орла» или «решки» при случайном подбрасывании монетки равна 1/2, если предполагается, что только эти две возможности имеют место и они являются равновозможными. Данное классическое «определение» вероятности можно обобщить на случай бесконечного количества возможных значений — например, если некоторое событие может произойти с равной вероятностью в любой точке (количество точек бесконечно) некоторой ограниченной области пространства (плоскости), то вероятность того, что оно произойдет в некоторой части этой допустимой области равна отношению объёма (площади) этой части к объёму (площади) области всех возможных точек.
Эмпирическое «определение» вероятности связано с частотой наступления события исходя из того, что при достаточно большом числе испытаний частота должна стремиться к объективной степени возможности этого события. В современном изложении теории вероятностей вероятность определяется аксиоматически, как частный случай абстрактной теории меры множества. Тем не менее, связующим звеном между абстрактной мерой и вероятностью, выражающей степень возможности наступления события, является именно частота его наблюдения.
Вероятностное описание тех или иных явлений получило широкое распространение в современной науке, в частности в эконометрике, статистической физике макроскопических (термодинамических) систем, где даже в случае классического детерминированного описания движения частиц детерминированное описание всей системы частиц не представляется практически возможным и целесообразным. В квантовой физике сами описываемые процессы имеют вероятностную природу.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
вероя́тность
1. объективная возможность осуществления, существования, степень осуществимости чего-либо ◆ Вероятность выпадения снега в июле в Москве чрезвычайно низка.
2. матем. величина, представляющая собой конечно-аддитивную меру на сигма-алгебре событий, принимающую значения от 0 до 1 ◆ Вероятность выпадения цифры 5 на кубике — одна шестая.
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: провериться — это что-то нейтральное, положительное или отрицательное?
Что такое вероятность и как ее посчитать
Пусть будет некий абстрактный эксперимент в процессе которого может происходить некое событие. Этот эксперимент провели пять раз, и в четырех из них происходило то самое событие. Какие выводы можно сделать из этих 4/5?
Есть формула Бернулли, которая дает ответ, с какой вероятностью происходит 4 из 5 при известной исходной вероятности. Но она не дает ответ, какая была исходная вероятность, если событий получилось 4 из 5. Оставим пока в стороне формулу Бернулли.
Сделаем маленькую простенькую программку, симулирующую процессы вероятностей для такого случая, и на основе результата вычислений построим график.
Код этой программы можно найти здесь, рядом же вспомогательные функции.
Полученный расчет закинул в эксель и сделал график.
Такой вариант графика можно назвать распределением плотности вероятностей значения вероятности. Его площадь равна единице, которая распределена в этом холмике.
Для полноты картины упомяну, что этот график соответствует графику по формуле Бернулли от параметра вероятность и умноженный на N+1 количества экспериментов.
Далее по тексту, там где в статье употребляю дробь вида k/n, то это не деление, это k событий из n экспериментов, чтобы каждый раз не писать k из n.
Далее. Можно увеличить количество экспериментов, и получить более узкую область расположения основных величин значения вероятность, но как бы их не увеличивали, эта область не сократится до нулевой области с точно известной вероятностью.
На графике ниже изображены распределения для величин 4/5, 7/9, 11/14 и 24/30. Чем уже область, тем выше холмик, площадь которого неизменная единица. Эти соотношения выбраны, потому что они все около 0.8, а не потому что именно такие могут возникнут при 0.8 исходной вероятности. Выбраны, чтобы продемонстрировать, какая область возможных значений остается даже при 30 проведенных экспериментах.
Код программы для этого графика здесь.
Из чего следует, что в действительности экспериментальную вероятность абсолютно точно не определить, а можно лишь предположить область возможного расположения таковой величины, с точностью в зависимости от того сколько произвели замеров.
Сколько бы экспериментов не провели, всегда остается вероятность, что исходная вероятность может оказаться и 0.0001 и 0.9999. Для упрощения крайние маловероятные значения отбрасываются. И берется, скажем, например 95% от основной площади графика распределения.
Такая штука называется доверительные интервалы. Каких-либо рекомендаций, сколько именно и почему процентов нужно оставить я не встречал. Для прогноза погоды берут поменьше, для запуска космических шаттлов побольше. Так же обычно не упоминают, какой все же используется доверительный интервал на вероятность событий и используется ли вообще.
В моей программе расчет границ доверительного интервала осуществляется здесь.
Получилось, что вероятность события определяется плотностью вероятностей значения вероятности, и на это еще нужно наложить процент области основных значений, чтобы можно было хоть что-то определенно сказать, какая все же вероятность у исследуемого события.
Теперь, про более реальный эксперимент.
Пусть будет всем надоевшая монетка, подбрасываем эту монетку, и получаем 4 из 5 выпадений решкой — очень реальный случай. В действительности это не совсем то же самое, что описал чуть выше. Чем это отличается от предыдущего эксперимента?
Предыдущий эксперимент описывался из предположения, что вероятность события может быть равнораспределена на интервале от 0 до 1. В программе это задается строкой double probability = get_random_real_0_1();. Но не бывает монеток с вероятностью выпадения, скажем, 0.1 или 0.9 всегда одной стороной.
Если взять тысячу самых разных монет от обычных до самых кривых, и для каждой произвести замер выпадения путем подбрасывания их по тысяче и более раз, то это покажет, что реально они выпадают одной стороной в диапазоне от 0.4 до 0.6 (это числа навскидку, не буду же я выискивать 1000 монет и каждую подбрасывать 1000 раз).
Как этот факт меняет программу для симуляции вероятностей одной конкретной монеты, для которой получили 4 из 5 выпадения решкой?
Допустим, что распределение выпадения одной стороной для монет описывается как приближение к графику нормального распределения взятого с параметрами средняя = 0.5, стандартное отклонение = 0.1. (на графике ниже он изображен черным цветом).
Когда в программе меняю генерацию исходной вероятности с равнораспределенной на распределенную по указанному правилу, то получаю следующие графики:
Код этого варианта здесь.
Видно, что распределения сильно сдвинулись и теперь определяют несколько иную область, в которой высоковероятно возможна искомая вероятность. Поэтому, если известно, какие вероятности бывают для тех вещей, одну из которых хотим измерить, то это может несколько улучшить результат.
В итоге, 4/5 это ни о чем не говорит и даже 50 проведенных экспериментов не очень информативны. Это очень мало информации, чтобы определить, что за вероятность все же лежит в основе эксперимента.
Как упомянул в комментариях jzha, человек существенно знающий математику, данные графики можно построить и путем точных формул. Но цель данной статьи все же как можно наглядней показать как образуется то, что все в повседневной жизни называют вероятностью.
Для того что бы это строить путем точных формул, это нужно рассмотреть имеющиеся в наличии данные по распределению вероятностей всех монет через аппроксимацию бета распределением, и путем сопряжения распределений выводить уже расчеты. Такая схема это существенный объем по объяснениям, как это сделать, и если я это здесь буду описывать, то это получится скорее статья по математическим расчетам, а не про бытовые вероятности.
Как получить в формулах описанный частный случай с монетой, смотрите комментарии от jzha.
вероятность
вероятность (probability) — число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 — это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.
Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.
эмпирическая вероятность — вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.
вероятность очень редких событий нельзя посчитать эмпирически.
субъективная вероятность — вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.
Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).
Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).
Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P
Несогласованная вероятноть — например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.
Безусловная вероятность — это ответ на вопрос «Какова вероятность того, что событие произойдет?»
Условная вероятность — это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).
Совместная вероятность — вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).
P(A|B) = P(AB)/P(B) (1)
P(AB) = P(A|B)*P(B)
Правило суммирования вероятностей:
Вероятность того, что случится либо событие A либо событие B —
P (A or B) = P(A) + P(B) — P(AB) (2)
если события A и B взаимоисключающие, то
P (A or B) = P(A) + P(B)
Независимые события — события A и B независимы если
P(A|B) = P(A), P(B|A) = P(B)
то есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты — пример такого события, — результат каждого следующего броска не зависит от результата предыдущего.
Зависимые события — это такие события, когда вероятность появления одного зависит от вероятности появления другого.
Правило умножения вероятностей независимых событий:
Если события A и B независимы, то
P(AB) = P(A) * P(B) (3)
Правило полной вероятности:
P(A) = P(AS) + P(AS’) = P(A|S’)P(S) + P (A|S’)P(S’) (4)
S и S’ — взаимоисключающие события
математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).
Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:
дисперсия случайной величины — матожидание квадратных отклонений случайной величины от ее матожидания:
условное матожидание (conditional expected value) — матожидание случайной величины X при условии того, что событие S уже произошло.
Теория вероятностей, формулы и примеры
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
У нас есть отличное онлайн обучение по математике для учеников с 1 по 11 классы, записывайся на пробное занятие!
Сложение и умножение вероятностей
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Записаться на марафон
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)