какая окружность называется вписанной в многоугольник
Описанная и вписанная окружность
теория по математике 📈 планиметрия
Описанная окружность
Окружность называется описанной вокруг многоугольника, если все вершины многоугольника принадлежат этой окружности. Многоугольник в этом случае называется вписанным в окружность.
Любой правильный многоугольник можно вписать в окружность. На рисунке описанная окружность проходит через каждую вершину правильного шестиугольника.
Вписанная окружность
Окружность называется вписанной в многоугольник, если она касается всех его сторон. Многоугольник в этом случае называется описанным около окружности.
В любой правильный многоугольник можно вписать окружность. На рисунке окружность вписана в правильный шестиугольник, она касается всех его сторон.
Вписанный и описанный треугольники
Центр описанной около треугольника окружности лежит на пересечении серединных перпендикуляров, проведенных к сторонам треугольника.
В любой треугольник можно вписать окружность: Центр вписанной окружности
Центр окружности, вписанной в треугольник, лежит на пересечении его биссектрис.
Вписанный и описанный четырехугольники
Не во всякий четырехугольник можно вписать окружность. Например, в прямоугольник нельзя вписать окружность. По рисунку видно, что окружность касается только трех его сторон, что не соответствует определению.
Условие вписанной в 4-х угольник окружности
Окружность является вписанной в четырехугольник, если суммы длин противоположных сторон равны.
На рисунке выполняется данное условие, то есть AD + BC=DC + AB
Окружность является описанной около четырехугольника, если суммы противоположных углов равны 180 градусов.
На рисунке окружности описана около четырехугольника, следовательно выполнено условие, что сумма углов А и С равна сумме углов B и D и равна 180 градусов.
Какая окружность называется вписанной в многоугольник
Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются этой окружности. Многоугольник в этом случае называется описанным около окружности.
Центр окружности, вписанной в многоугольник, есть точка, равноудаленная от всех сторон этого многоугольника, — точка пересечения биссектрис углов этого многоугольника. В многоугольник можно вписать окружность и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В любой треугольник можно вписать окружность.
В правильный многоугольник можно вписать окружность.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
Если окружность радиуса r вписана в многоугольник, площадь которого равна S, а полупериметр равен p, то имеет место соотношение площадь описанного многоугольника равна произведению полупериметра на радиус вписанной окружности.
Если окружность вписана в правильный треугольник, то ее радиус r выражается через его сторону a по формуле
Если окружность радиуса r вписана в прямоугольный треугольник с катетами а и b и гипотенузой с, то
Если окружность вписана в квадрат, то ее радиус равен половине стороны квадрата.
Какая окружность называется вписанной в многоугольник
Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются этой окружности. Многоугольник в этом случае называется описанным около окружности.
Центр окружности, вписанной в многоугольник, есть точка, равноудаленная от всех сторон этого многоугольника, — точка пересечения биссектрис углов этого многоугольника. В многоугольник можно вписать окружность и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В любой треугольник можно вписать окружность.
В правильный многоугольник можно вписать окружность.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
Если окружность радиуса r вписана в многоугольник, площадь которого равна S, а полупериметр равен p, то имеет место соотношение площадь описанного многоугольника равна произведению полупериметра на радиус вписанной окружности.
Если окружность вписана в правильный треугольник, то ее радиус r выражается через его сторону a по формуле
Если окружность радиуса r вписана в прямоугольный треугольник с катетами а и b и гипотенузой с, то
Если окружность вписана в квадрат, то ее радиус равен половине стороны квадрата.
Какая окружность называется вписанной в многоугольник
Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность
Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.
Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.
Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.
Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности
Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.
Окружность называется описанной около треугольника, если она проходит через три его вершины.
Окружность, вписанная в прямоугольный треугольник
Окружность, описанная около прямоугольного треугольника
Четырехугольник, вписанный в окружность
Окружность, вписанная в ромб
Окружность: вписанная в многоугольник или угол
Определения
В этом случае многоугольник \(P\) называется описанным около окружности.
Теорема
Центр вписанной в угол окружности лежит на его биссектрисе.
Доказательство
Теорема
В любой треугольник можно вписать единственную окружность, причём центр этой вписанной окружности есть точка пересечения биссектрис треугольника.
Доказательство
Данная окружность единственна, т.к. если предположить, что существует другая вписанная в \(\triangle ABC\) окружность, то она будет иметь тот же центр и тот же радиус, то есть будет совпадать с первой окружностью.
Таким образом, попутно была доказана следующая теорема:
Следствие
Биссектрисы треугольника пересекаются в одной точке.
Теорема о площади описанного треугольника
Если \(a,b,c\) – стороны треугольника, а \(r\) – радиус вписанной в него окружности, то площадь треугольника \[S_<\triangle>=p\cdot r\] где \(p=\dfrac2\) – полупериметр треугольника.
Доказательство
Но \(ON=OK=OP=r\) – радиусы вписанной окружности, следовательно,
Следствие
Если в многоугольник вписана окружность и \(r\) – ее радиус, то площадь многоугольника равна произведению полупериметра многоугольника на \(r\) : \[S_<\text<опис.мног-к>>=p\cdot r\]
Теорема
В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Доказательство
Достаточность. Докажем, что если суммы противоположных сторон четырехугольника равны, то в него можно вписать окружность.
Предположим, что это не так. Тогда \(CD\) либо является секущей, либо не имеет общих точек с окружностью. Рассмотрим второй случай (первый будет доказываться аналогично).
\[AB+C’D’=BC-CC’+AD-DD’ \Rightarrow C’D’+CC’+DD’=BC+AD-AB=CD\]
Получили, что в четырехугольнике \(C’CDD’\) сумма трех сторон равна четвертой, что невозможно*. Следовательно, предположение ошибочно, значит, \(CD\) касается окружности.
Замечание*. Докажем, что в выпуклом четырехугольнике не может сторона равняться сумме трех других.
Теоремы
1. Если в параллелограмм вписана окружность, то он – ромб (рис. 1).
2. Если в прямоугольник вписана окружность, то он – квадрат (рис. 2).
Верны и обратные утверждения: в любой ромб и квадрат можно вписать окружность, и притом только одну.
Доказательство
Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей ромба.
Обратное утверждение очевидно, причем центр этой окружности лежит на пересечении диагоналей квадрата.