какая последовательность называется монотонной
Монотонность последовательности
Монотонная последовательность — последовательность , удовлетворяющая одному из следующих условий:
Среди монотонных последовательностей выделяются строго монотонные последовательности, удовлетворяющие одному из следующих условий:
Иногда используется вариант терминологии, в котором термин «возрастающая последовательность» рассматривается в качестве синонима термина «неубывающая последовательность», а термин «убывающая последовательность» — в качестве синонима термина «невозрастающая последовательность». В таком случае возрастающие и убывающие последовательности из вышеприведённого определения называются «строго возрастающими» и «строго убывающими», соответственно.
Некоторые обобщения
Может оказаться, что вышеуказанные условия выполняются не для всех номеров , а лишь для номеров из некоторого диапазона
(здесь допускается обращение правой границы N + в бесконечность). В этом случае последовательность называется монотонной на промежутке I , а сам диапазон I называется промежутком монотонности последовательности.
Примеры
См. также
Тестирование псевдослучайных последовательностей — Тестирование псевдослучайных последовательностей совокупность методов определения меры близости заданной псевдослучайной последовательности к случайной. В качестве такой меры обычно выступает наличие равномерного распределения, большого… … Википедия
Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… … Википедия
Андреев, Леонид Николаевич — известный писатель. Род. в Орле в 1871 г.; отец его был землемер. Учился в Орловской гимназии и в университетах С. Петербургском и Московском, по юридическому факультету. Студентом сильно нуждался. Тогда же он написал первый свой рассказ «о… … Большая биографическая энциклопедия
НЕЛИНЕЙНАЯ КРАЕВАЯ ЗАДАЧА — численные методы решения методы, заменяющие решение краевой задачи решением дискретной задачи (см. Линейная краевая задача;численные методы решения и Нелинейное уравнение;численные методы решения). Во многих случаях, особенно при рассмотрении… … Математическая энциклопедия
Рукопись Войнича — Манускрипт Войнича написан с помощью неизвестной системы письма Рукопись Войнича (англ. Voyni … Википедия
Манускрипт Войнича — написан с помощью неизвестной системы письма Рукопись Войнича (англ. Voynich Manuscript) таинственная книга, написанная около 500 лет назад неизвестным автором, на неизвестном языке, с использованием неизвестного алфавита. Рукопись Войнича… … Википедия
д’Индия, Сиджизмондо — Сиджизмондо д’Индия (итал. Sigismondo d India, ок. 1582, Палермо? до 19 апреля 1629, Модена) итальянский композитор. Содержание 1 Биография 2 Творчество … Википедия
Модернизация — (Modernization) Модернизация это процесс изменения чего либо в соответствии с требованиями современности, переход к более совершенным условиям, с помощью ввода разных новых обновлений Теория модернизации, типы модернизации, органическая… … Энциклопедия инвестора
Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений. I. Ещё в «Началах» Евклида (3 в. до н. э.) были отчётливо сформулированы свойства В., называемых теперь, для отличия от… … Большая советская энциклопедия
Какая последовательность называется монотонной
Теорема 3 (Beйepштpacc). Всякая возрастающая числовая последовательность <xn> имеет предел: конечный, если она ограничена сверху, и бесконечный, если она неограничена сверху, причем
= sup <xn>.
Аналогично, если <xn> — убывающая последовательность, то существует (конечный или бесконечный) предел
= inf <xn>.
и, следовательно, этот предел конечен, если последовательность <xn> ограничена снизу, и бесконечен, если она неограничена снизу.
Рис. 52
Пусть последовательность <xn> возрастает. Докажем равенство (5.49). Остальные утверждения теоремы для возрастающих послеовательностей следуют из него очевидным образом.
Пусть = sup <xn>, значение
может быть как конечным, так и бесконечным. Возьмем произвольную окресность U(
) точки
и обозначим через
‘ ее левый конец (рис. 52). Очевидно,
‘ N имеет место неравенство
xn ‘
В силу возрастания последовательности <xn> из (5.51) и (5.52) следует, что для всех номеров n > n0 выполняется неравенство
‘ n0 имеет место включение
xn U(
),
=
an =
bn.
В самом деле, последовательность <an> возрастает, а <bn> убывает, кроме того (см. (4.25) в п. 4.5), было показано, что = sup <an> = inf <bn>. Поэтому равенство (5.55) сразу следует из теоремы 3.
Пример 6 (число e). Рассмотрим последовательность
и покажем, что она строго возрастает и ограничена сверху, а следовательно, согласно теореме 3 имеет конечный предел. Применив формулу бинома Ньютона, получим
Из выражения, стоящего в правой части равенства, видно, что при переходе от n к n + 1 число слагаемых (которые все положительны) в написанной сумме возрастает на единицу и каждое слагаемое, начиная с третьего, увеличивается, так как становится больше выражение, стоящее в каждых круглых скобках, ибо
то при n > 1 из равенства (5.57) получим
(мы заменили сумму конечной геометрической прогрессии суммой бесконечной геометрической прогрессии, так как у последней проще формула). Итак,
e 2,718281828459045.
Числовая последовательность
Определение 1. Числовой последовательностью называется функция, аргументом которой является множество всех натуральных чисел, или множество первых n натуральных чисел.
Обозначается числовая последовательность так:
где −i-ый член последовательности.
При словестном задании последовательности, описывается из каких элементов она состоит.
Последовательность нечетных чисел:
Последовательность простых чисел :
Последовательности (1) и (2) мы задали словестно.
Последовательность нечетных чисел аналитически задается формулой
Отметим, что последовательность простых чисел невозможно задать аналитически.
Пример задания рекуррентной последовательности:
В этой последовательности
Пример стационарной последовательности:
Возрастающие и убывающие последовательности
Определение 3. Последовательность, в которой каждый последующий член (кроме первого) больше предыдующего, называется возрастающей :
Определение 4. Последовательность, в которой каждый последующий член (кроме первого) меньше предыдующего, называется убывающей :
Пример 1. Выяснить, монотонна ли последовательность
Решение. Запишем n+1 член последовательности (подставим вместо n, n+1):
Найдем разность членов и
:
(3) |
Так как n=1,2,3. то правая часть уравнения (3) положительна. Тогда:
Таким образом, каждый последующий член последовательности больше предыдующего. Следовательно последовательность является возрастающим (и монотонным).
Пример 2. Выяснить, при каких значениях a последовательность (bn) является возрастающей и при каких, убывающей:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(4) |
Посмотрим на правую часть выражения (4). Если a 10, то . Тогда последовательность является убывающей. При a=10
. Последовательность имеет одинаковые члены:
т.е. имеем дело с последовательностью
Очевидно, что последовательность (5) не является монотонной. Она является стационарной последовательностью.
Ограниченные и неограниченные последовательности
Определение 5. Последовательность (yn) называется ограниченной сверху, если существует такое число k, что yn Определение 6. Последовательность (yn) называется ограниченной снизу, если существует такое число k, что yn>k при любом n.
Определение 7. Последовательность (yn) называется ограниченной, если она ограничена и сверху, и снизу.
Пример 3. Показать, что последовательность (an) является монотоннной и ограниченной:
Решение. Запишем n+1 член последовательности (вместо n подставим n+1):
Найдем разность членов и
:
(6) |
Правая часть равенства (6) положительна при любых натуральных чисел n. Следовательно последовательно (an) возрастающая (и монотонная).
Далее, сделаем эквивалентное преобразование для проследовательности (5):
Из выражения (7) видно, что при любых n an≤1. Т.е. хотя последовательность возрастает, то остается меньше числа 1 (ограничена сверху). Запишем несколько членов данной последовательности, задав n=1,2,3.
Так как последовательность возрастающая, то все члены последовательности не меньше . Тогда последовательность ограничена также и снизу. Таким образом последовательность ограничена и всерху, и снизу, т.е. является ограниченной последовательностью.
Сходящиеся и расходящиеся последовательности
Рассмотрим две числовые последовательности:
На координатной прямой изобразим члены этих последовательностей:
Предел числовой последовательности
Точка, к которой приближаются члены последовательности при увеличении n, называется пределом последовательности. Для последовательности (10) пределом является число 0. Более строго предел последовательности определяется так:
Определение 8. Число k называют пределом последовательности (yn), если для любой заранее выбранной окресности точки k, можно выбрать такой номер n0, чтобы все члены последовательности, начиная с номера n0 содержались в указанной окрестности.
Если k является пределом последовательности (yn), то пишут (
стремится к k или
сходится к k).
Обозначают это так:
Выраженние (11) читается так: предел проследовательности , при стремлении n к бесконечности равен k.
Изложим некоторые пояснения к определению 8.
Пусть выполнено (11). Возьмем окрестность точки k, т.е. интервал , где
радиус этой окрестности (
>0). По определению, существует номер n0, начиная с которого вся последовательность содержится в указанной окресности, т.е.
Если же взять другую окресность (пусть
), то найдется другой номер n1, начиная с которого, вся последовательность содержится в указанной окрестности, но этот номер будет больше n1 > n0.
Пример 4. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 0. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы .
Пусть, например, r=0.001. Вычислим n‘ из уравнения
В качестве n0 берем 501. Имеем:
Запишем члены последовательности (12) начиная с номера 501:
Далее, учитывая (13), имеем:
Следовательно, все члены последовательности (12) начиная с номера 501 попадают в окресность . А по определению 8, это означает:
Пример 5. Дана полследовательность (yn):
Доказать, что .
Решение. Найдем любую окрестность точки 2. Пусть ее радиус равен r. Тогда всегда можно выбирать n0 так, чтобы
Неравенство в (17) всегда выполняется так как n0 натуральное число, а правая часть неравенства отрицательно (это означает, что для любого n0). Из неравенства (16) можно найти номер n0, начиная с которого члены последовательности попадают в окресность (2−r; 2+r). Например, пусть r=0.001, тогда
. Тогда нужно брать n0=2000. И тогда все члены последовательности, начиная с номера 2000 попадают в окрестность (2−r; 2+r).
Запишем члены последовательности, начиная с номера 2000:
Легко проверить, что . Тогда, учитывая, что данная последовательность возрастающая (см. пример 1), получим:
Пример 6. Найти предел последовательности
Решение. Выполним некоторые преобразования выражения (18):
Тогда последовательность (18) можно переписать так:
(19) |
Как видно из (19), пройдя по членам последовательности слева направо, из числа 1 вычитается все меньшее и меньшее положительное число. Т.е. последовательность приближается к числу 1. Тогда 1 является пределом последовательности (19) и (18):
Свойства сходящихся последовательностей
Сходящиеся последовательности обладают рядом свойств.
Свойство 1. Если последовательность сходится, то только к одному пределу.
Свойство 2. Если последовательность сходится, то она ограничена.
Свойство 3. Если последовательность монотонна и ограничена, то она сходится (теорема Вейерштрасса).
Предел стационарной последовательности равен значению любого члена последовательности:.
Теорема. Если , то
1. Предел суммы равен сумме пределов:
2. Предел произведения равен произведению пределов:
3. Предел частного равен частному пределов:
4. Постоянный множитель можно вывести за знак предела:
Пример 7. Найти предел последовательности:
Решение. Так как , то
Пример 8. Найти предел последовательности:
Решение. Применив правило «предел суммы» теоремы, получим
Пример 9. Вычислить:
Решение. Делим числитель и знаменатель дроби на наивысшую из имеющихся степень переменного n. Далее используем правило «предел суммы» для числителя и знаменателя и правило «предел частного»: