какая решетка у мартенсита
Мартенсит и мартенситные стали: структура, кристаллическая решетка, свойства
Мартенсит, условием для появления которого служит мартенситное превращение, является характерным образованием для сплавов, содержащих от 11 до 17% хрома и не менее 0,15% углерода. В состав таких сплавов, кроме того, входят никель, вольфрам, молибден и ванадий (их количество очень незначительно).
Мартенситная сталь марки 10Х13 используется в изделиях, подвергающихся воздействию слабоагрессивных сред
Свойства и структура мартенсита
Мартенсит – это зерна игольчатой формы в микроструктуре металла, представляющие собой перенасыщенный твердый раствор углерода в альфа-железе. Такая структура характерна для сталей, прошедших процедуру закалки, а также для некоторых чистых металлов, обладающих полиморфизмом. Своим названием мартенсит обязан Адольфу Мартенсу – немецкому ученому, посвятившему большую часть своей жизни вопросам изучения металлов и их свойств. Следует отметить, что мартенситные стали из-за особенностей своей структуры отличаются самой высокой твердостью среди подобных материалов.
С таким явлением, как мартенситное превращение, происходящим при нагреве и охлаждении стали, связан уникальный эффект «памяти металла», обнаруженный и описанный учеными Г.В. Курдюмовым и Л.Г. Хандросом в 1949 году. Суть данного эффекта заключается в том, что деформация металла, создаваемая в нем в тот момент, когда происходит прямое мартенситное превращение, полностью исчезает во время обратного превращения. Благодаря этому эффекту ученым удалось создать сплавы, обладающие памятью своей формы. Изделия из таких сплавов, которые были подвергнуты деформации в мартенситном состоянии, принимают свою первоначальную форму, если их нагреть до температуры, вызывающей мартенситное превращение в стали.
Кристаллическая решетка мартенсита, формирующегося в структуре закаленного металла, является не кубической, а тетрагональной. Каждый ее элемент имеет форму прямоугольного параллелепипеда. Центральную часть такой ячейки (а также ее вершины) занимают атомы железа, во внутреннем пространстве между которыми находятся атомы углерода.
Мартенситные стали, как уже говорилось выше, отличаются высокой твердостью и прочностью, а объясняется это тем, что структура мартенсита, являясь неравновесной, характеризуется наличием сильных внутренних напряжений. В мартенситных сталях при их нагреве перераспределяются атомы углерода. Это явление носит диффузионный характер. В результате такого распределения в структуре стали формируются две фазы, каждая из которых отличается содержанием углерода и формой своей кристаллической решетки.
Кристаллическая решетка мартенсита
Такими фазами, которыми характеризуются все стали мартенситного класса при их нагреве, являются:
Исходной структурой для образования мартенсита является аустенит. Кристаллические решетки данных образований, одновременно присутствующих в микроструктуре стали, связаны между собой ориентационными соотношениями. Заключается данная связь в том, что плоскости решеток аустенита и мартенсита, которые имеют определенные кристаллографические индексы, параллельны друг другу.
Мартенсит, формирующий микроструктуру сталей, может присутствовать в ней в двух формах.
Различные типы мартенсита, образующиеся при закалке аустенита
Эта структура формируется при температуре ниже 2000. Она характерна для углеродистых и легированных сталей. Свойства мартенсита данного типа, присутствующего в структуре металла в виде пластин, определяет наличие на таких пластинах так называемого мидриба – средней линии, характеризующейся повышенной травимостью. Двойниковым данный мартенсит называют потому, что мидриб каждой его пластины образуется множеством двойников. Такие двойники, располагающиеся по плоскостям пластин мартенсита, имеют толщину 5–30 нм.
Оптическая микрофотография мартенсита пластинчатой структуры
Это образование характерно для структуры сталей, относящихся к высоколегированным, мало- и среднеуглеродистым. Температурный порог, при котором в таких сталях происходит формирование мартенситной структуры, находится выше отметки 3000. Мартенсит данного типа в полном соответствии со своим названием имеет форму вытянутых в одном направлении реек, толщина каждой из которых находится в интервале 0,2–2 мкм (при этом их длина больше ширины примерно в 5 раз). Структура металла, сформированная из мартенсита данного типа, представлена в виде сочетания групп (пакетов) таких параллельных друг другу кристаллов-реек. В этой структуре можно увидеть и прослойки между рейками мартенсита, состоящие из остаточного аустенита. Толщина таких прослоек в сплавах разного типа может составлять от 10 до 20 нм.
Оптическая микрофотография мартенсита рееечной структуры
При определенных условиях (в частности, когда интервал температур начала и завершения мартенситного превращения слишком большой) в сталях может сформироваться мартенсит обоих типов. Высокая температура приводит к снижению прочности аустенита, поэтому структура мартенсита, формирующегося при этом в сплаве, имеет реечную форму. При понижении температуры, когда прочность аустенита возрастает, в стали формируется мартенсит пластинчатого типа.
Существует определенная категория низкоуглеродистых сталей, в которых практически нет остаточного аустенита, а сформировавшийся мартенсит имеет только реечную форму. Температура, при которой в таких сталях наблюдаются мартенситные преобразования, составляет около 4000 С.
Особенности мартенситного превращения в сталях
Условием для такого явления, как мартенситное превращение, выступает не фиксированная температура, а определенный температурный промежуток. Верхняя граница этого интервала соответствует температуре, которая меньше температуры начала аустенитного распада на несколько сот градусов. Окончание данного процесса происходит при температуре, которая значительно ниже комнатной. Такие условия формирования мартенсита связаны с тем, что при этом в структуре сплава присутствует еще и остаточный аустенит.
Количество мартенсита в структуре стали можно увеличить, если подвергнуть сплав пластической деформации. Это необходимо делать при температурном режиме, требующемся для мартенситного превращения. Аустенит может превращаться в мартенсит и в том случае, если сплав подвергается пластической деформации и при комнатной температуре.
Схема изменений мартенсита в процессе нагрева
Рассматриваемое образование в структуре стали может принимать форму, которая называется мартенсит отпуска. Условиями для его формирования является нагрев сплава до температуры, которая ниже, чем температура преобразования феррита в аустенит. Характерной чертой процесса, при котором образуется мартенсит отпуска, является то, что мартенсит, имеющий игольчатую или пластинчатую форму, превращается в карбидные включения сферической конфигурации.
Суть преобразования начальной структуры сплава в мартенситную заключается в том, что молекулы в составе кристаллов такого сплава начинают упорядоченно передвигаться, меняя свое расположение относительно друг друга и, соответственно, формируя кристаллические решетки новой конфигурации. Таким образом, происходит не разрушение, а только деформация ячеек кристаллической решетки, что и приводит к образованию новой структуры сплава.
Образование кристаллов мартенсита в зерне аустенита
Для мартенситного преобразования структуры сплава, при котором происходит не разрушение, а видоизменение кристаллических решеток ячеек, формирующих его структуру, требуется очень незначительное количество энергии. Это способствует тому, что такие изменения происходят с высокой скоростью. Результаты подобных преобразований, а также условия их протекания позволяют эффективно менять характеристики сплавов, в которых они происходят, используя для этого методы термического или механического воздействия.
Свойства сталей с мартенситной структурой
Стали с мартенситной структурой, кроме высокого содержания углерода, характеризуются также наличием в составе хрома. Такие стали нередко легируются элементами, которые способны обеспечить высокую жаропрочность металла (вольфрам, молибден, ниобий и др.).
Химический состав хромистых мартенситных сталей
Стали, внутреннюю структуру которых формирует мартенсит, отличаются следующими особенностями:
Механические свойства мартенситных сталей
Поскольку стали с мартенситной структурой после их закалки становятся очень хрупкими и склонными к разрушению, технология их сварки значительно усложняется. Выполнять эту процедуру можно только после того, как изделие из такой стали нагреется до 200–4500, при этом важно, чтобы температура окружающего воздуха была выше нуля. Кроме ручной дуговой сварки, проводимой с использованием электродов, покрытых специальными составами, для соединения изделий из таких сплавов применяют следующие технологии:
Рекомендуемые режимы сварки мартенситных сталей
Если говорить о сферах применения, то стали мартенситной группы используют для производства таких изделий, как:
Мартенсит
Под этим термином понимают завершённый полиморфный процесс преобразования внутренней структуры различных видов сталей. Именно преобразование кристаллической решётки и превращение её в игольчатую структуру получало название мартенсит. Подобные деформации приводят к изменениям свойства конкретной марки стали. Мартенситная сталь составляет основу многих марок стали, в которых требуется улучшить физические и механические характеристики. Например, отпущенный мартенсит значительно увеличивает пластичность готовой стали.
Структура мартенсита
Основным отличием, которое приводит к изменению физических и механических характеристик стали является изменение внутренней структуры. Её называют мартенситная структура. В этом случае кристаллическая решётка претерпевает следующие изменения. Под воздействием внешних факторов происходит изменение направления движения атомов по сравнению с их стандартным, упорядоченным движением в рамках установленной решётки. Увеличиваются межатомные расстояния, что приводит к возникновению деформации, примерно на 10% относительно нормальных размеров. Величина изменений не приводит к переходу через энергетический барьер межатомных связей. Такой кристаллический эффект приводит к образованию специфической формы взаимных связей. Она носит так называемый игольчатый характер.
Изменения структуры стали происходит в процессе нагрева. Повышение температуры вызывает диффузионное перераспределение атомов углерода в рамках кристаллической решётки. Этот процесс вызывает образование нескольких фаз металла.
В результате обработки полученная мартенситная сталь приобретает игольчатую структуру, которая формирует более высокие прочностные характеристики, становится устойчивее к воздействию коррозии
Свойства мартенсита
В зависимости от методов обработки мартенсит подразделяется на несколько категорий:
Все эти разновидности – это сталь мартенситного класса, обладающая своими специфическими свойствами. Во всех случаях мартенсит представляет собой определённую марку стали. Например: 20Х13, 10Х12НДЛ, Х5ВФ, Х5М и многие другие.
К основным свойствам мартенситных сталей относится:
Два основных свойства твердость и антикоррозийная стойкость достигаются за счёт специальной обработки и добавлением соответствующих химических элементов. Мартенситная твёрдость в зависимости от содержания углерода может достигать достаточно высоких значений по основным шкалам оценки.
Мартенситное превращение
Данный процесс протекает в стали при высоких скоростях охлаждения. Оно должно быть непрерывным в течение всей процедуры. Мартенситное превращение в стали основано на полиморфном превращении двух аллотропических модификациях железа (альфа-железа Fea и гамма-железа Feg). Обладая температурным полиморфизмом, оба эти вида железа имеют свои кристаллические решётки. Первое формируется в объёмно-центрированную кубическую решётку. Второе в гранецентрированную кубическую решётку. При нагреве стали до 911 °С вплоть до температуры плавления 1593 °С наблюдается устойчивость альфа-железа. При охлаждении со скоростью, превышающей критическую, проявляется эффект преобразования. В этот период аустенит превращается в мартенсит. Механизм этого процесса обладает следующими особенностями:
Процесс мартенситного превращения не заканчивается полным образованием мартенсита. В стали остаётся остаточный аустенит. Его количество повышается при снижении точки начала превращения.
Область применения
Обладая специфическими, а в некоторых случаях уникальными свойствами стали мартенситной группы применяются для изготовления деталей, работающих в сложных технических и химических условиях. Из них изготавливают:
Основными недостатками таких сталей являются: трудности, возникающие при механической обработке и сварке отдельных деталей. Для решения второй задачи необходимо создавать специальные условия для сварки.
Мартенсит и мартенситные превращения в сталях
Структура и свойства мартенсита
Слово «мартенсит» не известно никому, кроме металлургов, но история его появления достаточно увлекательна, и заслуживает хотя бы нескольких строк.
Один из великих периодов изменений в цивилизации начался тогда, когда железо заменило бронзу. Тем не менее, было совершенно неизвестно, что именно придавало металлу ценные свойства, и на протяжении веков методы производства высококачественной стали хранились почти в алхимических секретах. Очевидно, что железо было основным компонентом, но эмпирически были обнаружены множество других незначительных добавок, для чего применялись экзотические способы охлаждения до комнатной температуры раскаленного докрасна металла.
Растворяя в железе углерод, можно получить твёрдый, но и очень хрупкий чугун, поэтому такой способ упрочнения не годится. Поэтому поиски наилучшей технологии повышения твёрдости, при сохранении удовлетворительной пластичности, продолжились.
Техника закалки железа в холодной воде впервые упоминается в «Одиссее» Гомера. Для ослепления циклопа по имени Полифем, который заключил Одиссея в тюрьму, был использован раскалённый кол, который сразу же после экзекуции Полифема окунули в холодную воду. Говоря современным языком, железный кол подвергли закалке, а затем – отпуску. В результате быстрого охлаждения атомы углерода вытянулись вдоль оси, повысив не только твёрдость, но и устойчивость металла к трещинам – в структуре произошло мартенситное превращение.
В 1890 году Адольф Мартенс – немецкий специалист в области металлографии, исследуя микроструктуру стали, обнаружил невидимые невооружённым глазом множество различных узоров. Им было установлено, что более твёрдые стали имеют полосчатые области, состоящие из разноориентированных микрокристаллических фаз, в то время как материалы более низкого качества обладают слабой когерентной структурой. Такие узорчатые в честь их первооткрывателя и были названы мартенситными.
Пластинчатый (двойниковый) мартенсит
Пластинчатые мартенситные структуры отличаются повышенной прочностью, но имеют тенденцию быть более хрупкими. На микроснимках, полученных с помощью электронных микроскопов, хорошо прослеживаются области такого мартенсита, имеющие форму линз. Для сталей, содержащих менее 0,60 % углерода, длинные тонкие пластины двойникового мартенсита часто сгруппированы в пакеты.
По мере увеличения процентного содержания углерода, так называемые высокоуглеродистые двойники мартенсита, начинают замещать дислокации внутри пластин. Это преобразование сопровождается объёмным расширением, создавая остаточные напряжения (в дополнение к деформациям) из-за внедрения атомов растворённого вещества. Уровень внутренних напряжений, способствующих повышению твёрдости стали, не должен превышать предела её прочности, иначе вероятно растрескивание стального изделия.
Реечный (дислокационный) мартенсит
Реечный мартенсит ассоциируется с высокой ударной вязкостью и пластичностью, но одновременно и с низкой прочностью. В низкоуглеродистых сталях реечные мартенситы в качестве субструктуры содержат дислокации высокой плотности.
Многие реечные мартенситы состоят из двойниковой субструктуры, а не из дислокаций высокой плотности. Кроме того, на границах раздела двойников обнаруживаются наноразмерные выделения, сцепляющиеся с ферритной матрицей. Это явление характерно не только для сталей, но и для титановых сплавов, а также других металлов, которые имеют объёмно-центрированную кристаллическую решётку.
Мартенситное превращение в сталях
Интенсивность мартенситного превращения также зависит от содержания углерода в стали. Увеличение данного показателя в аустените снижает температуры мартенситного превращения, что приводит к трудностям в превращении всего аустенита в мартенсит. Диапазон температур мартенситного превращения особенно важен при сварке, поскольку определяет состояние остаточных напряжений в свариваемых заготовках. Эти температуры для каждой конкретной марки могут быть рассчитаны, а для наиболее часто используемых марок приводятся в справочниках.
Особенности и сферы применения мартенситных сталей
Состав и свойства мартенситной стали дают ей однозначные преимущества при использовании в напряжённых конструкциях. Вследствие особенностей химического состава правильно подобранным режимом термической обработки и старения (либо отпуска) обеспечивается её закалка и упрочнение.
Нержавеющие стали мартенситного класса характеризуются высокой прочностью и твёрдостью в термически обработанном состоянии. Наибольшее применение находят сплавы, которые содержат 11…17% хрома, 4…15% молибдена, 1,2% углерода и никеля, 0,15…0,63% углерода. По сравнению с другими типами нержавеющей стали пониженное содержание никеля делает стали мартенситного класса менее устойчивыми к коррозии. С другой стороны, высокий процент углерода приводит к тому, что мартенситная сталь имеет весьма прочную молекулярную структуру. Особой прочностью, в том числе, и при ударных нагрузках обладают комплексно легированные мартенситостареющие стали.
Все стали, содержащие мартенсит, должны быть отпущены. Дело в том, что закалённый мартенсит образует твердую хрупкую микроструктуру, поэтому следует обеспечивать тонкий баланс, необходимый между прочностью и ударной вязкостью. При отпуске мартенсит частично разлагается на феррит и цементит. Отпущенный мартенсит не такой твёрдый, как только что закаленный, однако он практически сохраняет свою исходную твёрдость, приобретая более мелкозернистую структуру.
Образование мартенсита не ограничивается только сталями. Ряд сплавов также отличается кристаллографическими изменениями аналогичной природы.
Мартенситные стали – нержавеющие сплавы с высоким содержанием хрома и углерода
Мартенситные стали представляют собой хромистые сплавы, структура которых состоит в основном из мартенсита. В них содержится обычно не менее 0,15 процентов углерода, от 11 до 17 процентов хрома, а также незначительное количество таких элементов, как никель, вольфрам, ванадий и молибден.
1 Что такое мартенсит?
Под мартенситом понимают игольчатую микроструктуру, которая фиксируется в отдельных чистых металлах, имеющих склонность к полиморфизму, и металлических сплавах, прошедших процедуру закалки. По сути, мартенсит – это базовый структурный компонент стали после закалки, который является твердым пересыщенным упорядоченным раствором углерода в α-железе.
Впервые он был описан Марком Мартенсом – известным специалистом в области проблем, связанных с усталостью различных металлических материалов. Именно в его честь и был назван мартенсит.
Кристаллическая решетка интересующего нас углеродного раствора в α-железе является тетрагональной. Каждая из ее элементарных составляющих описывается формой параллелепипеда (прямоугольного). В центре и вершинах ячейки при этом размещаются атомы железа, а в объемах ячеек расположены атомы углерода. Высокие прочностные показатели и твердость, коими описывается любая мартенситная нержавеющая сталь, обуславливаются неравновесной структурой мартенсита, характеризуемой существенными внутренними напряжениями.
При нагреве мартенситного металла отмечается перераспределение (диффузионное) атомов углерода, что приводит к формированию двух фаз:
Элементарная ячейка первой из означенных фаз описывается ромбической структурой, вторая – объемно-центрированной. Решетка начальной структуры аустенита связана кристаллографическими постоянными соотношениями с решеткой мартенсита. Это означает, что плоскости с четко заданными кристаллографическими индексами аустенитной и мартенситной структуры параллельны друг другу.
Принято выделять два типа мартенсита:
2 Что представляет собой мартенситное превращение в стали?
Такой полиморфный процесс предполагает то, что упорядоченное передвижение молекул либо атомов в составе кристалла вызывает модификацию их расположения по отношению друг к другу. Причем междуатомные расстояния в данном случае существенно больше, нежели показатели смещений относительного плана соседних атомов.
Деформации ячеек кристаллической решетки – это и есть ее перестройка, за счет чего окончание мартенситного преобразования вполне допускается описывать как однородно измененную начальную фазу. Отметим отдельно и то, что деформация имеет малую величину (не более 10 %). По этой причине энергетический барьер, который не дает развиваться однородному переходу начальной фазы в конечную, также невелик, если соотносить его с энергией связи в кристалле.
Описываемое нами превращение становится возможным только в том случае, когда постоянно присутствует упорядоченное взаимодействие между метастабильной и стабильной фазой. Повышенная подвижность и низкий энергетический потенциал межфазных границ обусловлены их упорядоченным строением.
Следствием этого становится то, что требуемая для появления кристаллов в новой фазе “лишняя” энергия, имеет малое значение. Ее вполне можно сопоставить с энергией “исходных” дефектов, имеющихся в начальной фазе. За счет такой особенности скорость образования мартенситных кристаллов является по-настоящему большой, причем, как правило, тепловых изменений для зарождения новых кристаллов не требуется.
Мартенситные преобразования в комбинации с модификациями атомного порядка компонентов и их перераспределения являются базой для разнообразных структурных превращений, которые дают возможность изменять характеристики кристаллических материалов посредством их механической либо термической обработки.
3 Мартенситные стали – описание, особенности
Такие хромистые стали имеют в своем составе достаточно высокое содержание углерода. Кроме того, зачастую они легируются молибденом, ниобием, вольфрамом и иными компонентами, которые обеспечивают высокие жаропрочные показатели конечного металла.
Особенности сталей, относимых к мартенситному классу:
Популярные марки мартенситных стальных сплавов:
Используются описываемые стали для производства:
Технология сварки сталей описываемого класса достаточно сложна, что вызвано склонностью таких металлов после процедуры закалки к хрупкому разрушению. Их следует сваривать после предварительного нагрева до 200–450 °С, причем температура окружающего воздуха должна быть плюсовой. Как правило, металлы мартенситной группы свариваются методом ручной дуговой сварки с применением электродов, покрытых спецсоставами. Реже используются другие виды сварки:



























