какая система исчисления используется в компьютере
Какая система исчисления используется в компьютере
“Компьютерные” системы счисления
Оперативная память компьютера состоит из ячеек, в каждой из которых может храниться 8 битов информации, т. е. в каждой ячейке может храниться 8 разрядов двоичного числа. Целые числа в компьютере хранятся в памяти в формате с фиксированной запятой. В этом случае каждому разряду ячейки памяти соответствует всегда один и тот нее разряд числа, а запятая находится справа после младшего разряда, т. е. вне разрядной сетки. Для хранения целых неотрицательных чисел отводится одна ячейка памяти (8 битов).
Пример: Число А2 = 111100002 будет храниться в ячейке памяти следующим образом:
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
Определим диапазон чисел, которые могут храниться в оперативной памяти в формате целого неотрицательного числа. Минимальное число соответствует восьми нулям, хранящимся в восьми ячейках памяти, и равно 0. Максимальное число соответствует восьми единицам, хранящимся в ячейках памяти, и равно 255. Таким образом, диапазон изменения целых неотрицательных чисел от 0 до 255.
Обмен информацией между компьютерными устройствами осуществляется путём передачи двоичных кодов. Пользоваться такими кодами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) на некоторых этапах разработки, создания, настройки вычислительных систем заменяют двоичные коды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа.
Для хранения целых чисел со знаком отводится две ячейки памяти (16 битов), причем старший (левый) разряд отводится под знак числа (если число положительное, то в знаковый разряд записывается 0, если число отрицательное, записывается 1), а остальные 15 позиций само число.
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
Максимальное положительное число (с учетом выделения одного разряда на знак) для данного формата представления равно:
Достоинствами представления чисел в формате с фиксированной запятой являются простота и наглядность представления чисел, а также простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представления величин, недостаточный для решения математических, физических, экономических и других задач, в которых используются как очень малые дробные, так и очень большие числа.
Какая система исчисления используется в компьютере
Изучение любого языка высокого уровня обычно начинается с освоения основных команд и написания первых простейших программ. Но с ассемблером так сразу не получится. Это объясняется тем, что программы на ассемблере напрямую манипулируют устройствами компьютера, в первую очередь процессором и памятью. Языки высокого уровня скрывают от программиста все манипуляции с компьютерным «железом». Таким образом, чтобы научиться программировать на ассемблере, необходимо знать архитектуру компьютера.
1.1. Архитектура компьютера.
Успешное применение языка ассемблера невозможно без знания и понимания архитектуры компьютера и знания архитектуры конкретного процессора, для которого будет создаваться программа.
Архитектура компьютера – это логическая организация, структура и ресурсы компьютера, которые может использовать программист.
Архитектура компьютера включает в себя архитектуры отдельных устройств, входящих в компьютер. Хотя компьютер состоит из многих внешних и внутренних устройств, но реально программисту на ассемблере приходится работать только с тремя устройствами компьютерной системы: процессором, памятью и портами ввода-вывода. В сущности, эти три устройства определяют работу всего компьютера и работу всех внешних устройств подключенных к нему. Все эти три устройства соединены между собой при помощи трех основных шин: шиной данных (ШД), шиной адреса (ША) и шиной управления (ШУ) (рис. 1).
Рис. 1. Архитектура ЭВМ.
Процессор — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.
Оперативная память предназначена для загрузки программ и для временного хранения различных данных, необходимых для работы программ.
Порты ввода-вывода предназначены для взаимодействия с пользователем и другими устройствами.
Шина (bus) – это группа параллельных проводников, с помощью которых данные передаются от одного устройства к другому:
Все три шины вместе образуют системную шину или ее еще называют магистраль.
1.2. Системы счисления.
Слово “компьютер” (computer) с английского языка переводится как “вычислитель”, т. е. машина для проведения вычислений. И это полностью соответствует действительности, т. к. на уровне “железа” компьютер выполняет только простейшие арифметические операции с числами, такие как сложение и умножение.
Сердцем компьютера является процессор, называемый часто центральным процессором (ЦП) или микропроцессором. Именно центральный процессор выполняет все вычисления.
Так исторически сложилось, что практически все цифровые микросхемы, в том числе компьютерные процессоры, работают только с двумя разрешенными уровнями напряжения. Один из этих уровней называется уровнем логической единицы (или единичным уровнем), а другой — уровнем логического нуля (или нулевым уровнем). Чаще всего логическому нулю соответствует низкий уровень напряжения (от 0 до 0,4 В), а логической единице — высокий уровень (от 2,4 до 5 В). Два уровня напряжения было выбрано исключительно из-за простоты реализации.
Таким образом, можно образно представлять, что в электронной цепи компьютера “бегают” только цепочки ноликов и единичек. За этими цепочками нулей и единичек закрепилось название машинные коды. Точно также можно представлять, что в память компьютера, а также на магнитные, оптические и прочие носители записываются нолики и единички, которые в совокупности составляют хранимую информацию.
То есть компьютер способен воспринимать только нолики и единички, а для нас (людей) эти нолики и единички представляются через устройства вывода (дисплеи, принтеры, звуковые колонки и пр.) в виде текста, графических изображений и звуков.
Так как компьютер способен воспринимать только два управляющих сигнала: 0 и 1, то и любая программа должна быть ему представлена только в двоичных кодах, т. е. в машинных кодах. В старые добрые времена операторы первых ЭВМ программировали напрямую в машинных кодах, переключая специально предусмотренные для этого тумблеры, или пробивали двоичные коды на перфолентах и перфокартах, которые затем считывала ЭВМ и выполняла операции согласно этим кодам.
Однако записывать и запоминать огромные двоичные цепочки, первым программистам было неудобно, поэтому они стали вместо двоичной системы использовать другие системы счисления, например десятичную, восьмеричную или шестнадцатеричную. Для сравнения: двоичное число 11001000 будет представлено в десятичном виде как 200, а в восьмеричной и шестнадцатеричной соответственно как 310 и С8.
Стоит еще раз отметить, что недвоичные системы счисления первые программисты стали использовать исключительно для личного удобства. Компьютер не способен воспринимать десятичные, шестнадцатеричные или восьмеричные числа, а только и только двоичные коды!
Таким образом, операторы первых ЭВМ стали составлять свои программы в более удобной системе счисления (восьмеричной, шестнадцатеричной или другой), а потом переводить их в двоичный машинный код. Наибольшее распространение у первых программистов из всех систем счисления получила шестнадцатеричная система счисления, которая до сих пор является основной в компьютерном мире. И все из-за того, что в отличие от других систем счисления перевод из шестнадцатеричной системы счисления в двоичную систему и обратно осуществляется очень легко — вместо каждой шестнадцатеричной цифры, подставляется соответствующее четырехзначное двоичное число.
Хотя шестнадцатеричная система облегчила работу с машинными кодами, но создавать программу в шестнадцатеричном виде все равно очень не просто. В итоге родился язык ассемблера, который давал возможность писать программы на более понятном человеку языке и в то же время позволял легко переводить их в машинный код.
Язык ассемблера прозвали низкоуровневым языком, потому что он максимально приближен к машинному языку, а значит к “железу” компьютера. После языка ассемблера стали появляться высокоуровневые языки, такие как Бейсик, Паскаль, Фортран, Си, С++ и пр. Они еще более понятны человеку, но преобразование в машинный код высокоуровневых программ значительно сложнее, из-за чего размер кода, как правило, получается большим и менее быстрым по сравнению с ассемблерными программами.
Если операторы первых ЭВМ переводили свои программы в машинный код вручную, то сейчас эту работу выполняют специальные программы— трансляторы (англ, translator — переводчик). Для языков высокого уровня транслятор принято называть компилятором (англ, compiler — составитель, собиратель). Для языка ассемблера обычно тоже не используется слово транслятор, а говорят просто: “ассемблер”. Таким образом, ассемблером называют, как язык программирования, так и транслятор этого языка.
Соответственно процесс работы ассемблера называют ассемблированием. Процесс работы компилятора называют компилированием. Процесс обратный ассемблированию, т. е. преобразование машинного кода в программу на языке ассемблера называют дизассемблированием.
Цифра в двоичной арифметике называется разрядом (или точнее “двоичным разрядом”) и может принимать значение ноль или единица. В компьютерном мире вместо разряда часто употребляют название бит.
Таким образом, минимальной единицей информации в компьютерной системе является бит, который может принимать только значение 0 или 1. Однако минимальным объемом данных, которым позволено оперировать любой компьютерной программе является не бит, а байт. Байт состоит из восьми бит. Если программе нужно изменить значение только одного бита, то она все равно должна считать целый байт, содержащий этот бит. Биты в байте нумеруются справа налево от 0 до 7, при этом нулевой бит принято называть младшим, а седьмой — старшим (рис. 2).
Однако не только байтами может оперировать компьютерная программа, но и более крупными единицами данных— словами, двойными словами и учетверенными словами. Слово состоит из двух байт, при этом биты с 0 по 7 составляют младший байт в слове, а биты с 8 по 15— старший (рис. 3). Понятно, что слово может принимать до 2 16 =65536 различных значений.
Двойное слово, как следует из самого названия, состоит из двух слов или четырех байт, а значит из 32-х бит, а два двойных слова составляют учетверенное слово (64 бита).
Существует еще более крупная единица, которая называется параграф и представляет собой 16 смежных байт.
Системы счисления, используемые в компьютере
Ищем педагогов в команду «Инфоурок»
Описание презентации по отдельным слайдам:
Описание слайда:
Системы счисления, используемые в компьютере.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
КУШНАРЕНКОВСКИЙ МНОГОПРОФИЛЬНЫЙ ПРОФЕССИОНАЛЬНЫЙ КОЛЛЕДЖ
Описание слайда:
СОДЕРЖАНИЕ
ЧТО ТАКОЕ СИСТЕМА СЧИСЛЕНИЯ…………. ………………3
ВВЕДЕНИЕ…………………………………………………………..4
СИСТЕМА СЧИСЛЕНИЯ (СС)……………………………..…..5-10
ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ….…………….11-20
ПЕРЕВОД ЧИСЕЛ ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ……………………………………………………21-28
ВЫВОДЫ………………………………. …. ………………….29
Список литературы…………………………………………. ……30
Описание слайда:
Описание слайда:
Описание слайда:
5
Система счисления (СС)
Знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
Описание слайда:
6
Системы счисления
Позиционные
Непозиционные
Описание слайда:
7
Позиционная система счисления
Количественное значение каждой цифры зависит от ее местоположения (позиции) в числе.
Описание слайда:
8
Непозиционная система счисления
Цифры не меняют своего количественного значения при изменении их положения в числе.
Описание слайда:
9
Основание системы
Количество цифр, используемых для изображения числа в позиционной системе счисления.
Описание слайда:
10
Алгоритм перевода десятичных чисел в двоичные
Разделить число на 2. Зафиксировать остаток (0 или 1) и частное.
Если частное не равно 0, то разделить его на 2, и так далее, пока частное не станет равно 0.
Если частное 0, то записать все полученные остатки, начиная с первого, справа налево.
Описание слайда:
11
Позиционные системы счисления
Описание слайда:
12
В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения одинаковых цифр, стоящих в соседних позициях числа.
Описание слайда:
Описание слайда:
14
Разряд
Позиция цифры в числе.
Возрастает справа налево, от младших разрядов к старшим.
Описание слайда:
15
В десятичной СС цифра, находящаяся в крайней справа позиции (разряде), обозначает количество единиц, цифра, смещенная на одну позицию влево, — количество десятков, еще левее — сотен, затем тысяч и так далее.
Описание слайда:
16
Пример
55510 = 5·102+5·101+5·100
Описание слайда:
17
Умножение или деление десятичного числа на 10 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной, на один разряд соответственно вправо или влево.
Описание слайда:
18
Двоичная СС
Числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициен-тами, в качестве которых выступают цифры 0 или 1.
Описание слайда:
19
Умножение или деление двоичного числа на 2 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево.
Описание слайда:
101,012 · 2 = 1010,12;
101,012 : 2 = 10,1012
Описание слайда:
21
Перевод чисел
в позиционных системах счисления
Описание слайда:
22
Для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру.
Если в последней, левой, группе окажется меньше трех цифр, то необходимо ее дополнить слева нулями.
+
Описание слайда:
23
Для упрощения перевода можно заранее подготовить таблицу преобразования двоичных триад (групп по 3 цифры) в восьмеричные цифры:
Описание слайда:
24
Для перевода дробного двоичного числа (правильной дроби) в восьмеричное необходимо разбить его на триады слева направо и, если в последней, правой, группе окажется меньше трех цифр, дополнить ее справа нулями.
Далее необходимо триады заменить на восьмеричные числа.
Описание слайда:
25
Пример
Преобразуем дробное двоичное число А2 = 0,1101012 в восьмеричную систему счисления:
Описание слайда:
26
При сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд.
Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания.
Описание слайда:
27
Сложим в столбик двоичные числа 1102 и 112
Описание слайда:
Описание слайда:
Описание слайда:
Список литературы
1.Шауцукова Л.З. «Основы информатики в вопросах и ответах»,
2.Гашков С.Б. Системы счисления и их применение. МЦНМО, 2004.
3.Фомин С.В. Системы счисления, М.: Наука, 1987.
4.Информатика. Компьютерная техника. Компьютерные технологии. Пособие под ред. О.И.Пушкаря.- Издательский центр “Академия”, Киев, 2001 г.
5.Касаткин В.Н. Введение в кибернетику. Радянська школа. Киев, 1976 г.
6.Г. И. Глейзер. История математики в школе. М.: Просвещение, 1964 г.
7. Детская энциклопедия: [В 10-ти т.] Для среднего и старшего возраста. 8.Гл.ред. Маркушевич А.И. Т.2. — Мир небесных тел; Числа и фигуры. 9.История арифметики, пособие для учителей. М.: Учпедгиз, 1959.-423с. 10. Выгодский М.Я. Арифметика и алгебра в древнем мире. Изд. 2-е, испр. идоп. М.: Наука, 1967. — 367 с.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Курс повышения квалификации
Охрана труда
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
Курс профессиональной переподготовки
Охрана труда
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация
Международная дистанционная олимпиада Осень 2021
Похожие материалы
Конспект НОД на тему «Русское народное творчество» для детей подготовительной к школе группе
Рабочая программа средств учебной дисциплины ОП.11. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПРОФЕССИО-НАЛЬНОЙ ДЕЯТЕЛЬНОСТИ программы подготовки специалистов среднего звена специальности профессиональный цикл 15.02.08 Технология машиностроения
Культура Саратовского края 19 век
Реферат:”Требования к профессиональной компетентности педагога-наставника”
Творческий конкурс по истории Саратовского края «Саратов- мой город любимый»
План работы кружка «Краеведение. История Саратовского края»
Рабочая программа ПМ.03 Управление ассортиментом, оценка качества и обеспечение сохраняемости товаров
Не нашли то что искали?
Воспользуйтесь поиском по нашей базе из
5289982 материала.
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
В Башкирии школьные каникулы продлили до 14 ноября
Время чтения: 1 минута
Путин попросил привлекать родителей к капремонту школ на всех этапах
Время чтения: 1 минута
СК предложил обучать педагогов выявлять деструктивное поведение учащихся
Время чтения: 1 минута
В Тюменской области продлили на неделю дистанционный режим для школьников
Время чтения: 1 минута
В Москве запустили онлайн-проект по борьбе со школьным буллингом
Время чтения: 2 минуты
Минобрнауки разработало концепцию преподавания истории российского казачества
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Основы систем счисления
Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.
Введение
Система счисления — это способ записи (представления) чисел.
Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки
Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.
Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.
Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.
Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.
Непозиционные системы
Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.
Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система
Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.
Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:
Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32: 
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92: 
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа: 
Теперь число 3632 следует записывать, как:
Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.
Позиционные системы счисления
Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.
Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.
Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.
Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.
Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.
Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.
Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?
Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.
Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.
Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.
Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная
Позиционные системы подразделяются на однородные и смешанные.
Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”
Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева
Перевод из одной системы счисления в другую
Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510
Преобразование из десятичной системы счисления в другие
Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.
Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118
Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.
Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.
Для примера рассмотрим число 458: 45 = (100) (101) = 1001012
Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.
Преобразование дробной части любой системы счисления в десятичную
Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.
Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.
Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28
Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.
Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012









