какая средняя скорость в пути всех семей

Способы нахождения средней скорости в физике

Основные понятия и законы кинематики

Кинематика — раздел механики, описывающий механическое движение тел без рассмотрения причин, из-за которых происходит движение.

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Для описания движения нужна система отсчета, относительно которой мы будем описывать движение.

Система отсчета — это система координат, связанная с телом отсчета и прибор для измерения времени.

Тело отсчета — это тело, относительно которого рассматривают положение других тел.

Материальная точка — это тело, размеры которого можно не учитывать при решении задачи.

Траектория — это мысленная линия в пространстве, которую при движении описывает материальная точка.

Траектория движения делится на два типа:

Путь — это длина траектории, которую описывает тело или материальная точка за данный промежуток времени.

Перемещение S → — это вектор, соединяющий начальное положение тела или материальной точки с ее конечным положением.

Скорость — это векторная физическая величина, характеризующаяся направлением и быстротой перемещения материальной точки.

Определение средней скорости

Рассчитать среднюю скорость можно по следующей формуле:

Определение средней путевой скорости

Средняя путевая скорость — это отношение пути или длины траектории, пройденного телом, к интервалу времени, за которое этот путь был пройден.

Формула средней путевой скорости выглядит так:

Примеры решения задач

Автомобиль первый час ехал со скоростью 100 км/ч, после чего сделал остановку. Следующие два часа автомобиль ехал со скоростью 90 км/ч, а затем два часа — со скоростью 80 км/ч. Найдите среднюю скорость на протяжении всего пути автомобиля.

В условии сказано о трех участках пути.

ϑ с р → = S 1 → + S 2 → + S 3 → t 1 + t 2 + t 3

Участки пути мы можем вычислить и посчитать следующим образом:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

ϑ с р = 100 + 180 + 160 1 + 2 + 2 = 440 5 = 88 к м ч

Ответ: средняя скорость составляет 88 км/ч.

Автомобиль проехал по дороге расстояние 140 км за время, равное 2 часам, затем сделал остановку. После остановки автомобиль проехал 60 км за 3 часа. Какова средняя скорость автомобиля за весь путь?

ϑ с р → = ∆ S → ∆ t ϑ с р → = S 1 → + S 2 → t 1 + t 2 ϑ с р → = 140 + 60 2 + 3 = 40 к м ч

Ответ: средняя скорость автомобиля составляет 40 км/ч.

Человек занимается бегом и за 2 часа пробежал 5 км, а за следующий час пробежал 3 км. Определите среднюю скорость бегуна.

Искать среднюю скорость будем как во второй задаче.

Источник

Как найти среднюю скорость. Пошаговая инструкция

Есть средние величины, неправильное определение которых вошло в анекдот или в притчу. Любые неверно произведённые расчёты комментируются расхожей общепонятной ссылкой на такой заведомо абсурдный результат. У каждого, к примеру, вызовет улыбку саркастического понимания фраза «средняя температура по больнице». Однако те же знатоки нередко, не задумываясь, складывают скорости на отдельных отрезках пути и делят подсчитанную сумму на число этих участков, чтобы получить столь же бессмысленный ответ. Напомним из курса механики средней школы, как найти среднюю скорость правильным, а не абсурдным способом.

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Аналог «средней температуры» в механике

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Простые «формулы» расчёта величин при равномерном движении

И для всего пройденного пути, и для отдельных его участков в случае усреднения скорости справедливы соотношения, написанные для равномерного движения:

То есть для нахождения искомой величины v с использованием соотношения (3) нам нужно точно знать две другие. Именно решая вопрос, как найти среднюю скорость движения, мы прежде всего должны определить, каков весь пройденный путь S и каково всё время движения t.

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Математическое обнаружение скрытой ошибки

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Явное подтверждение ошибки «в числах»

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Когда среднее арифметическое «не подводит»

Если задача формулируется так: «За равные промежутки времени тело двигалось сначала со скоростью v1, затем v2, v3 и так далее», быстрый ответ на вопрос, как найти среднюю скорость, может быть найден неправильным способом. Предоставим читателю самостоятельно в этом убедиться, просуммировав в знаменателе равные промежутки времени и воспользовавшись в числителе vср соотношением (1). Это, пожалуй, единственный случай, когда ошибочный метод приводит к получению корректного результата. Но для гарантированно точных расчётов нужно пользоваться единственно правильным алгоритмом, неизменно обращаясь к дроби vср = S : t.

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению vср = S : t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже «средней температуры» на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в «письмах счастья» водителям.

Источник

Среднее арифметическое

Чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму на их количество.

Обозначим среднее арифметическое буквой « m ». По определению выше найдем сумму всех чисел.

Разделим полученную сумму на количество взятых чисел. У нас по условию три числа.

В итоге мы получаем формулу среднего арифметического:

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Для чего нужно среднее арифметическое?

Кроме того, что его постоянно предлагают найти на уроках, нахождение среднего арифметического весьма полезно и в жизни.

Например, вы решили продавать футбольные мячи. Но так как вы новичок в этом деле, совершенно непонятно по какой цене вам продавать мячи.

Тогда вы решаете узнать, по какой цене в вашем районе уже продают футбольные мячи конкуренты. Узнаем цены в магазинах и составим таблицу.

МагазинЦена футбольного мяча
«Спорт-товары»290 руб.
«Adidas»360 руб.
«Все для футбола»310 руб.

Цены на мячи в магазинах оказались совсем разные. Какую цену для продажи футбольного мяча нам лучше выбрать?

Если выбрать самую низкую ( 290 руб.), то мы будем продавать товар себе в убыток. Если выбрать самую высокую ( 360 руб.), то покупатели не будут приобретать футбольные мячи у нас.

Нам нужна средняя цена. Здесь на помощь приходит среднее арифметическое.

Вычислим среднее арифметическое цен на футбольные мячи:

Таким образом, мы получили среднюю цену ( 320 руб.), по которой мы можем продавать футбольный мяч не слишком дёшево и не слишком дорого.

Средняя скорость движения

Со средним арифметическим тесно связано понятие средней скорости движения.

Наблюдая за движением транспорта в городе, можно заметить, что машины, то разгоняются и едут с большой скоростью, то замедляются и едут с маленькой скоростью.

Таких участков на пути следования автотранспорта бывает много. Поэтому для удобства расчётов, используют понятие средней скорости движения.

Средняя скорость движения — это весь пройденный путь разделить на всё время движения.

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Рассмотрим задачу на среднюю скорость.

Задача № 1503 из учебника «Виленкин 5 класс»

Автомобиль двигался 3,2 ч по шоссе со скоростью 90 км/ч, затем 1,5 ч по грунтовой дороге со скоростью 45 км/ч, наконец 0,3 ч по просёлочной дороге со скоростью 30 км/ч. Найдите среднюю скорость движения автомобиля на всём пути.

Для расчёта средней скорости движения нужно знать весь путь, пройденный автомобилем, и всё время, которое автомобиль двигался.

S1 = 90 · 3,2 = 288 (км) — шоссе.

S2 = 45 · 1,5 = 67,5 (км) — грунтовая дорога.

S3 = 30 · 0,3 = 9 (км) — просёлочная дорога.

S = 288 + 67,5 + 9 = 364,5 (км) — весь путь, пройденный автомобилем.

t = 3,2 + 1,5 + 0,3 = 5 (ч) — всё время.

Vср = 364,5 : 5 = 72,9 (км/ч) — средняя скорость движения автомобиля.

Ответ: Vср = 72,9 (км/ч) — средняя скорость движения автомобиля.

Источник

Как находить среднюю скорость

Повторим, как находить среднюю скорость, и рассмотрим конкретные примеры.

Чтобы найти среднюю скорость, надо:

1) найти весь пройденный путь;

2) найти все время движения;

3) весь пройденный путь разделить на все время движения:

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

На примерах посмотрим, как находить среднюю скорость.

1) Пешеход прошел 2 часа со скоростью 7 км/ч и 3 часа со скоростью 5 км/ч. Найти среднюю скорость движения пешехода на всем пути.

Находим весь пройденный путь: 2∙7 + 3∙5 = 29 км.

Находим все время движения: 2+3=5 часов.

Чтобы найти среднюю скорость, весь пройденный путь делим на все время движения: 29:5=5,8 км/ч.

2) Автомобиль проехал 2 часа по шоссе со скоростью 100 км/ч, 1,5 часа по грунтовой дороге со скоростью 40 км/ч и 30 минут по проселочной дороге со скоростью 26 км/ч. Найти среднюю скорость автомобиля на всем пути.

Переведем минуты в часы: 30 минут = 0,5 часа.

Найдем весь пройденный автомобилем путь:

2∙100 + 1,5∙40 + 0,5∙26 = 200 + 60 + 13= 273 км.

Находим все время движения:

Чтобы найти среднюю скорость движения автомобиля, разделим весь пройденный путь на все время движения:

3) Велосипедист проехал 3 часа со скоростью 12 км/ч, затем отдохнул час, после чего продолжил путь со скоростью 9 км/ч и проехал еще 2 часа. Найти среднюю скорость движения велосипедиста на всем пути.

Найдем весь путь велосипедиста:

3∙12 + 1∙0 + 2∙9 = 54 км.

Найдем все время движения:

Чтобы найти среднюю скорость движения велосипедиста, весь путь делим на все время движения:

193 Comments

самый лучший сайт по математике спасибо огромное

Илья, спасибо за теплые слова!

Велосипедист проехал со скоростью 12 км/ч 4 км,остановился на 40 мин и продолжил движение со скоростью 8 км/ч и проехал 8 км. Найдите скорость велосипедиста на протяжении всей дороги? Пожалуйста,помогите,очень важно

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Валерий, эта задача — на движение по водному пути. Но ее можно решить логически.
Поскольку известно, что скорость катера по течению реки в два раза больше скорости против течения, при этом расстояние туда и обратно — одинаковое, то время, затраченное катером на путь по течению, в два раза меньше времени против течения (скорость и время — обратно пропорциональные величины. Если скорость увеличить в несколько раз, то при том же расстоянии время уменьшится во столько же раз).
Таким образом, все время можно разделить на 3 части, одну часть которого катер потратил на путь по течению, две — на путь против течения. Так как на весь путь было потрачено 2 часа=120 минут, то из них на путь по течению — 1/3 от 120 — это 40 минут=2/3 часа. Чтобы найти скорость, надо расстояние разделить на время: 20:(2/3)=30 км/ч — это скорость катера по течению. Она в два раза больше скорости против течения, следовательно, скорость против течения 30:2=15 км/ч.

Девушка ехала на работу со средней скоростью 40 миль в час, обратно домой ехала со средней скоростью 30 миль в час, весь путь от дома до работы и обратно занял 1 час, сколько миль проехала девушка?

Это — задача на движение. Пусть на работу девушка ехала х часов,тогда обратный путь занял у нее (1-х) часов. По формуле пути путь на работу равен 40х миль, обратный путь — 30(1-х) миль. Так как туда и обратно девушка проехала одинаковое расстояние, составляем уравнение: 40х=30(1-х). Отсюда х=3/7, путь на работу 40∙(3/7)=120/7 миль, туда и обратно — 2∙(120/7)=240/7=38 2/7 мили.

Источник

Как решать задачи на среднюю скорость

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

В ЕГЭ по матматике профильного уровня встречаются задачи на нахождение средней скорости автомобиля, путешественника, бегуна и т.п. В этой статье мы постараемся разобраться со способами решения данного типа зданий. Попробуйте решить следующие задачи:

Если у Вас возникает недопонимание, или же вы просто не знаете как решать такие задачи, то данная статья предназначена как раз для Вас!

какая средняя скорость в пути всех семей. Смотреть фото какая средняя скорость в пути всех семей. Смотреть картинку какая средняя скорость в пути всех семей. Картинка про какая средняя скорость в пути всех семей. Фото какая средняя скорость в пути всех семей

Средняя скорость объекта

Для начала вспомним формулу, по которой решаются все задачи на движение: ​ \( S=vt \) ​ — пройденный путь равняется произведению скорости и времени. Так вот, средняя скорость равна отношению всего пути ко времени, которое было затрачено на прохождение этого пути. Если перевести на математический язык:

Однако, раз возникла нужда вычислить среднюю скорость, то наверняка она была разной на различных промежутках. Например, Вам необходимо прийти в школу. Сначала вы какой-то путь проезжаете на автобусе, а затем идете пешком. Условно, весь ваш путь можно разделить на 2 промежутка, и на обоих Ваша скорость и время его прохождения будет разной. Поэтому, если в задаче дано несколько промежутков, то мы должны найти общий путь, который равен сумме всех промежутков вашего пути (то есть ​ \( S=S_1+S_2+\ldots+S_n \) ​ (где ​ \( n \) ​ — количество путей, на которых скорость была постоянной). Аналогично мы должны вычислить и общее время, которое было затрачено на прохождение всего пути. То есть ​ \( t=t_1+t_2+\ldots+t_n \) ​, причем время вычисляем на каждом промежутке! То есть, запишем математически формулу для нахождения времени на n-м промежутке: ​ \( t_n=\dfrac \) ​

Решение задач

А теперь, обогатившись некоторой теорией решим первую из предложенных задач:

Первую треть трассы велосипедист ехал со скоростью 12 км/ч, вторую треть – со скоростью 16 км/ч, а последнюю треть – со скоростью 24 км/ч. Найдите среднюю скорость велосипедиста на протяжении всего пути. Ответ дайте в км/ч.

Решение:

Теперь мы знаем длину всего пути ( \( 3S \) ​) и сколько времени автомобиль затратил на прохождение всего пути ( \( t=\dfrac<9S> <48>\) ​, значит найти среднюю скорость не составит и труда:

Теперь постарайтесь самостоятельно решить оставшиеся две текстовые задачи на нахождение средней скорости, а если не получается, то посмотрите видео-урок

Ответы к текстовым задачам:

Видео-урок: “Как решать задачу на нахождение средней скорости”:

В данном видео-уроке я покажу, как решаются все три предложенные текстовые задачи на нахождение средней скорости. Также Вы можете сравнить своё решение с моим.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *