Неверно что в экспертных системах применяется дескриптор
Представления знаний в интеллектуальных системах, экспертные системы
Введение
Экспертная система (далее по тексту — ЭС) — это информационная система, назначение которой частично или полностью заменить эксперта в той или иной предметной области. Подобные интеллектуальные системы эффективно применяются в таких областях, как логистика, управление воздушными полетами, управление театром военных действий. Основною направленной деятельностью предсказание, прогнозирование в рамках определенного аспекта в предметной области.
Экскурс в историю экспертных систем
История экспертных систем берет свое начало в 1965 году. Брюс Бучанан и Эдвард Фейгенбаум начали работу над созданием информационной системы для определения структуры химических соединений.
Результатом работы была система под названием Dendral. В основе системы формировалась последовательность правил подобных к «IF – THEN». Информационная система не перестала развиваться и получила множество наследников, таких как ONCOIN – информационная система для диагностики раковых заболеваний, MYCIN – информационная система для диагностики легочных инфекционных заболеваний.
Следующим этапом стали 70-е годы. Период не выделялся особыми разработками. Было создано множество разных прототипов системы Dendral. Примером служит система PROSPECTOR, областью деятельности которой являлась геологические ископаемые и их разведка.
В 80-ых годах появляются профессия – инженер по знаниям. Экспертные системы набирают популярность и выходят на новый этап эволюции интеллектуальных систем. Появились новые медицинские системы INTERNIS, CASNE.
С 90-ых годов развитие интеллектуальных систем приобретает новые и новые методы и особенности. Нововведением становится парадигма проектирования эффективных и перспективных систем. Гибкость, четкость решения поставленных задач дало новое название – мультиагентных систем. Агент – фоновый процесс который действует в целях пользователя. Каждый агент имеет свою цель, «разум» и отвечает за свою область деятельности. Все агенты в совокупности образуют некий интеллект. Агенты вступают в конкуренцию, настраивают отношения, кооперируются, все как у людей.
В 21 век, интеллектуальной системой уже не удивишь никого. Множество фирм внедряет экспертные системы в области своей деятельности.
Быстродействующая система OMEGAMON разрабатывается c 2004 года с IBM, цель которой отслеживание состояния корпоративной информационной сети. Служит для моментального принятия решений в критических или неблагоприятных ситуациях.
G2 – экспертная система от фирмы Gensym, направленная на работу с динамическими объектами. Особенность этой системы состоит в том, что в нее внедрили распараллеливание процессов мышления, что делает ее быстрее и эффективней.
Структура экспертной системы
1. База знаний
Знания — это правила, законы, закономерности получены в результате профессиональной деятельности в пределах предметной области.
База знаний — база данных содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. Другими словами, это набор таких закономерностей, которые устанавливают связи между вводимой и выводимой информацией.
2. Данные
Данные — это совокупность фактов и идей представленных в формализованном виде.
Собственно на данных основываются закономерности для предсказания, прогнозирования. Продвинутые интеллектуальные системы способные учиться на основе этих данных, добавляя новые знания в базу знаний.
3. Модель представления данных
Самая интересная часть экспертной системы.
Модель представления знаний (далее по тексту — МПЗ) — это способ задания знаний для хранения, удобного доступа и взаимодействия с ними, который подходит под задачу интеллектуальной системы.
4. Механизм логического вывода данных(Подсистема вывода)
Механизм логического вывода(далее по тексту — МЛВ) данных выполняет анализ и проделывает работу по получению новых знаний исходя из сопоставления исходных данных из базы данных и правил из базы знаний. Механизм логического вывода в структуре интеллектуальной системы занимает наиболее важное место.
Механизм логического вывода данных концептуально можно представить в виде :
А — функция выбора из базы знаний и из базы данных закономерностей и фактов соответственно
B — функция проверки правил, результатом которой определяется множество фактов из базы данных к которым применимы правила
С — функция, которая определяет порядок применения правил, если в результате правила указаны одинаковые факты
D — функция, которая применяет действие.
Какие существуют модели представления знаний?
Распространены четыре основных МПЗ:
Продукционная МПЗ
Пример
Диагноз | Температура | Давление | Кашель |
---|---|---|---|
Грипп | 39 | 100-120 | Есть |
Бронхит | 40 | 110-130 | Есть |
Аллергия | 38 | 120-130 | Нет |
Пример продукции:
IF Температура = 39 AND Кашель = Есть AND Давление = 110-130 THEN Бронхит
Продукционная модель представления знаний нашла широкое применение в АСУТП
Среды разработки продукционных систем(CLIPS)
CLIPS (C Language Integrated Production System) — среда разработки продукционной модели разработана NASA в 1984 году. Среда реализована на языке С, именно потому является быстрой и эффективной.
Пример:
Подобное правило будет активировано только тогда, когда в базе данных появится факт симптома с подобными параметрами.
Семантическая сеть МПЗ
В основе продукционной модели лежит ориентированный граф. Вершины графа — понятия, дуги — отношения между понятиями.
Особенностью является наличие трех типов отношений:
По количеству типов отношений выделяют однородные и неоднородные семантические сети. Однородные имею один тип отношения между всеми понятиями, следовательно, не однородные имею множество типов отношений.
Все типы отношений:
Пример
Недостатком МПЗ является сложность в извлечении знаний, особенно при большой сети, нужно обходить граф.
Фреймовая МПЗ
Предложил Марвин Мински в 1970 году. В основе фреймовой модели МПЗ лежит фрейм. Фрейм — это образ, рамка, шаблон, которая описывает объект предметной области, с помощью слотов. Слот — это атрибут объекта. Слот имеет имя, значение, тип хранимых данных, демон. Демон — процедура автоматически выполняющаяся при определенных условиях. Имя фрейма должно быть уникальным в пределах одной фреймовой модели. Имя слота должно быть уникальным в пределах одного фрейма.
Слот может хранить другой фрейм, тогда фреймовая модель вырождается в сеть фреймов.
Пример
Пример вырождающейся в сеть фреймов
На своей практике, мне доводилось встречать системы на основе фреймовой МПЗ. В университете в Финляндии была установлена система для управления электроэнергией во всем здании.
Языки разработки фреймовых моделей (Frame Representation Language)
FRL (Frame Representation Language) — технология создана для проектирования интеллектуальных систем на основе фреймовой модели представления знаний. В основном применяется для проектирования вырождающихся в сеть фреймовой модели.
Запись фрейма на языке FRL будет иметь вид:
Существуют и другие среды: KRL (Knowledge Representation Language), фреймовая оболочка Kappa, PILOT/2.
Формально логическая МПЗ
В основе формально логической МПЗ лежит предикат первого порядка. Подразумевается, что существует конечное, не пустое множество объектов предметной области. На этом множестве с помощью функций интерпретаторов установлены связи между объектами. В свою очередь на основе этих связей строятся все закономерности и правила предметной области. Важное замечание: если представление предметной области не правильное, то есть связи между объектами настроены не верно или не в полной мере, то правильная работоспособность системы будет под угрозой.
Пример
A1 = A2 = A3 = ; IF A1 AND A2 THEN
Банальней примера и не придумаешь.
Важно: Стоит заметить, что формально логическая МПЗ схожа с продукционной. Частично это так, но они имеют огромную разницу. Разница состоит в том, что в продукционной МПЗ не определены никакие связи между хранимыми объектами предметной области.
Важно
Любая экспертная система должна иметь вывод данных и последовательность «мышления» системы. Это нужно для того чтобы увидеть дефекты в проектировании системы. Хорошая интеллектуальная система должна иметь право ввода данных, которое реализуется через интеллектуальный редактор, право редактора на перекрестное «мышление» представлений при проектировании системы и полноту баз знаний(реализуется при проектировки закономерностей предметной области между инженером по знаниям и экспертом).
Заключение
Экспертные системы действительно имеют широкое применение в нашей жизни. Они позволяют экономить время реальных экспертов в определенной предметной области. Модели представления знаний это неотъемлемая часть интеллектуальных систем любого уровня. Поэтому, я считаю, что каждый уважающий себя IT-специалист, должен иметь даже поверхностные знания в этих областях.
Тест по дисциплине Информационные технологии
Тест по дисциплине Информационные технологии
1 Компонента экспертной системы, предназначенная для хранения долгосрочных данных, описывающих рассматриваемую область.
2 Компонента экспертной системы, предназначенная для разъяснения того, как система получила решение задачи.
3 Компонент экспертной системы, который ориентирован на организацию дружественного общения с пользователем в ходе решения задачи и в процессе приобретения знаний.
4 Какой из этапов разработки экспертных систем определяет способы представления всех видов знаний, моделирует работу системы?
5 На каком этапе разработки экспертных систем определяются задачи, которые подлежат решению, выявляются цели разработки?
6 На каком этапе разработки экспертных систем проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи
7 На каком этапе разработки экспертных систем осуществляется наполнение экспертом базы знаний
8 Общение с экспертной системой осуществляет конечный пользователь в режиме.
9 Прикладная система искусственного интеллекта, в которой база знаний представляет собой формализованные эмпирические знания высококвалифицированных специалистов называется.
10 Прототип экспертной системы, предназначенный для исследования направлений совершенствования экспертной системы и для пополнения базы знаний называется.
11 Что такое экспертная система?
-определенная предметная область искусственного интеллекта
+система искусственного интеллекта, заключающая в себе знания специалиста-эксперта в определенной предметной области
-компьютерная система, моделирующая рассуждения человека
-логическая модель знаний
12 Экспертные системы используются для …
-автоматического принятия сложных решений
-оказания помощи для хранения баз знаний
-оказания помощи при работе с базами данных
-оказания помощи при работе с базами знаний
+оказания помощи в принятии сложных решений
13 Определение смысла данных, результаты которого должны быть согласованными и корректными называется.
14 Непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров называется.
15 Обнаружение неисправностей в некоторой системе называется.
16 Экспертные системы, которые интерпретируют ситуацию, меняющуюся с некоторым фиксированным интервалом времени.
17 Какой классификации экспертных систем не выделено?
-по стадии создания
-по сложности решаемых задач
+по виду информации
-по типу использования
18 Динамические экспертные системы работают.
+с непрерывной интерпретацией поступаемых данных
-с ситуацией, изменяющейся в некотором фиксированном интервале времени
-со стабильными данными
19 По назначению ЭС делятся на:
+общего назначения, специализированные, проблемно-ориентированные и предметно-ориентированные
-Изолированные, ЭС на входе/выходе других систем, гибридные
-простые, средние и сложные ЭС
-исследовательский образец, демонстрационный, промышленный и коммерческий
20 По типу использования различают следующие виды ЭС:
+Изолированные, ЭС на входе/выходе других систем, гибридные
-специализированные и проблемно-ориентированные ЭС
-простые, средние и сложные ЭС
-исследовательский образец, демонстрационный, промышленный и коммерческий
21 По стадии создания выделяют
-Изолированные, ЭС на входе/выходе других систем, гибридные
-специализированные и проблемно-ориентированные ЭС
-простые, средние и сложные ЭС
+исследовательский образец, демонстрационный, промышленный и коммерческий
22 По степени зависимости от внешней среды выделяют
+статические и динамические экспертные системы
-изолированные и гибридные ЭС
-простые, средние и сложные ЭС
-общие, специализированные и проблемно-ориентированные ЭС
Кому нужны экспертные системы
Что такое экспертная система (ЭС)? Все слышали этот термин, он часто воспринимается как устаревший, немодный, далекий от мэйнстрима и в науке, и в технике. «Это очень специальная область программирования, не имеющая широкого применения». ЭС проходят в институте и потом благополучно забывают.
Они появились в конце 60-х годов как самое многообещающее, практичное направление развития науки об искусственном интеллекте. Несмотря на множество интересных разработок, ЭС не только не получили широкого распространения, но нет даже ни одной коммерчески успешной разработки.
Если анализировать концепции этого направления информатики – ЭС, становится ясно, что, хотя направление не получило заметного развития, проблемы здесь лежат в самой основе развития компьютеров.
Когда появились первые электронный вычислительные машины (ЭВМ), их называли электронным мозгом и с опаской ожидали скорого прихода машин, заменяющих человека. Машин стало много, их мощность возросла в миллионы раз, но человека они заменить не смогли. Появление «электронного мозга» в ближайшие годы не прогнозируется, несмотря на то, что уже прошло более 60 лет со времени появления первых вычислительных машин.
Одна из основных причин слабого развития ЭС – алгоритмическая парадигма мышления разработчиков прикладных программ. Эта парадигма настолько глубоко проникла во все, что касается компьютеров, что мы этого не замечаем. Кажется, все замечательно – человек дает команды (нажимает мышкой нужные кнопки на экране) – машина исполняет, чего еще желать? Если же копнуть глубже – какие команды отдает человек? Вместо того, чтобы давать машине задание – сказать ЧТО надо сделать, что хочет пользователь, человек дает инструкции – КАК делать, какую последовательность операций выполнить машине, чтобы получить нужный результат.
Первая проблема в общении пользователя с машиной – надо учиться, обучиться пользованию нужными прикладными программами – т.е. выучить, когда и какие кнопки в программе нажимать, чтобы получить нужный результат. Как и любую машину, ее надо освоить, понять как с ней обращаться, запомнить способы управления и освоить их, так же как с автомобилем или кофеваркой.
Противоречивость этой ситуации никто не замечает. Компьютер – не просто очередная машина для облегчения жизни человеку, компьютер – машина для усиления интеллекта, для выполнения умственных операций. (Как то уже забылось, что арифметические операции и процедуры – умственные операции, которые существуют только в сознании человека). Поскольку современные компьютеры выполняют только алгоритмизованные операции, вся остальная часть умственной деятельности остается за человеком.
В результате, чем больше программ должен применять человек, тем больше он должен запомнить и выучить. Компьютер не «разгружает», а «нагружает».
Вместо квалифицированного, умного, знающего «помощника», которому можно поручить работу, не беспокоясь о результате, мы имеем сильного и неумного «раба», который сделает только то, что прикажут и ни на йоту больше, который не имеет ни усердия, ни знаний, ни творческой устремленности на результат.
Чтобы добиться от него результата, человек – пользователь должен хорошо потрудиться — выучить программу, постоянно ею управлять, готовить исходные данные для программы и еще обрабатывать результаты работы.
Возьмем, для примера, электронную бухгалтерию. Бухгалтерские программы можно сравнить со счетоводом – специалистом низшей квалификации в иерархии бухгалтерских специальностей. Бухгалтерская программа не может заменить бухгалтера, она заменяет лишь счетовода – заполняет графы в журналах и подсчитывает итоговые суммы. Электронная бухгалтерия имеет много полезных свойств, но без бухгалтера она бесполезна.
Какой может быть интеллектуальная программа – бухгалтерская ЭС? Такая программа полностью заменяет специалиста-бухгалтера – автоматически и безошибочно классифицирует и кодирует денежные операции, знает, автоматически собирает и применяет все необходимые нормативные и правовые акты и может консультировать директора по текущим операциям и по общим бухгалтерским вопросам.
Если взять наши текстовые редакторы – они облегчают труд машинисток, избавляя от необходимости перепечатывать страницу при обнаружении ошибок. В результате мы перестали писать ручкой и сами стали машинистками. Есть ли от этого выигрыш в производительности труда?
Интеллектуальный текстовый редактор должен сам создавать тексты документов по указаниям пользователя. Например: «На это письмо надо ответить согласием», «На эту претензию надо подготовить возражение», «Вот это письмо надо переписать в более мягкой форме».
А если взять электронные таблицы – сама по себе мощная парадигма электронных таблиц могла бы быть намного более массовой и эффективной, если бы не сложность ее освоения. Большинство пользователей не используют и половины функций электронных таблиц и текстовых редакторов из-за трудностей полного освоения этих программ.
Всякая современная прикладная программа может быть дополнена или заменена ЭС для кардинального повышения эффективности использования компьютера. Если перейти от обработки символов и чисел к обработке смысловой информации, можно получить настоящего помощника – семантический компьютер.
Достаточно заменить традиционный хелп на базу знаний по использованию программы, чтобы значительно повысить эффективность и освободить пользователя от напряжения, которое возникает при работе с новой программой.
Одно из важных отличий ЭС – ориентация на язык пользователя, поскольку в ЭС пользователь формулирует описание своей задачи – ЧТО он хочет, а не инструкции машине – КАК выполнить его задание.
Существует один пробел в современном программировании из-за которого в сознании программистов нет установки на смысловую обработку информации – нет формальной основы – языков программирования для представления и обработки смысловой информации, хотя все необходимые языковые средства описаны в соответствующих публикациях. Система концептуального программирования разрабатывается в НПФ «Семантикс Рисеч».
Созданию прикладных ЭС массового применения мешает инерция алгоритмического подхода. Многое можно сделать и на существующей технологической базе. Надо лишь вспомнить, что машина является средством усиления интеллекта человека и может выполнять не только арифметические операции.
Замена существующих прикладных программ экспертными системами кардинально повысит эффективность компьютеров и улучшит современный мир. Приведем лишь несколько возможных примеров.
Создание ЭС массового применения могли бы сильно повысить производительность труда во всех областях деятельности человека.
ЭС для юриста могла бы помогать ему в составлении и анализе документов, консультировать по текущему законодательству.
ЭС может принципиально изменить природу школьного и вузовского образования, а также значительно улучшить полезность системы электронного правительства. ЭС налогового инспектора могла бы автоматически проверять налоговые декларации и другие документы.
В не очень далекой перспективе развития ЭС, можно представить, что каждый человек сможет получить неограниченные возможности заинтересованного и активного персонального общения, которые сегодня обеспечивают коммерческий успех социальный сетей и поисковых программ Интернет. Общение с виртуальными интеллектуальными личностями кардинально изменят не только парадигму общения человека с компьютером, но и сами основы экономической деятельности общества.
Экспертная система
В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.
Похожие действия выполняет такой программный инструмент как Мастер (англ. Wizard ). Мастера применяются как в системных программах так и в прикладных для упрощения интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС — отсутствие базы знаний — все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.
Другие подобные программы — поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).
Содержание
Структура ЭС интеллектуальных систем
[2] представляет следующую структуру ЭС:
База знаний состоит из правил анализа информации от пользователя по конкретной проблеме. ЭС анализирует ситуацию и, в зависимости от направленности ЭС, дает рекомендации по разрешению проблемы.
Как правило, база знаний экспертной системы содержит факты (статические сведения о предметной области) и правила — набор инструкций, применяя которые к известным фактам можно получать новые факты.
В рамках логической модели баз данных и базы знаний записываются на языке Пролог с помощью языка предикатов для описания фактов и правил логического вывода, выражающих правила определения понятий, для описания обобщенных и конкретных сведений, а также конкретных и обобщенных запросов к базам данных и базам знаний.
Конкретные и обобщенные запросы к базам знаний на языке Пролог записываются с помощью языка предикатов, выражающих правила логического вывода и определения понятий над процедурами логического вывода, имеющихся в базе знаний, выражающих обобщенные и конкретные сведения и знания в выбранной предметной области деятельности и сфере знаний.
Обычно факты в базе знаний описывают те явления, которые являются постоянными для данной предметной области. Характеристики, значения которых зависят от условий конкретной задачи, ЭС получает от пользователя в процессе работы, и сохраняет их в рабочей памяти. Например, в медицинской ЭС факт «У здорового человека 2 ноги» хранится в базе знаний, а факт «У пациента одна нога» — в рабочей памяти.
База знаний ЭС создается при помощи трех групп людей:
Режимы функционирования
ЭС может функционировать в 2-х режимах.
Экспертные системы помогут. Но экспертом не сделают
Принятие решений во многих областях требует не только обширных формальных знаний по теме, но и интуиции. Считается, что такие решения может принимать только человек, однако создатели экспертных систем уже не первое десятилетие пытаются «проверить гармонию алгеброй» и научить свои детища действовать в условиях неполной и даже противоречивой входной информации.
Экспертные системы, появившиеся в начале 70-х годов прошлого века и ставшие на два десятилетия популярным направлением развития средств искусственного интеллекта, называют второй волной ИИ. Первая была связана с попытками создания универсальных «решателей проблем», системами доказательства теорем, первыми системами машинного перевода и компьютерными играми в шашки и шахматы. Сейчас мы живем в эпоху третьей волны ИИ, ставшей следствием успехов решений глубокого обучения. Между этими волнами были промежутки падения интереса к искусственному интеллекту («зимы ИИ»), вызванные разочарованием полученными результатами первых двух волн. Сейчас некоторые эксперты предрекают, что скоро может снова наступить такая зима, хотя, скорее всего, это не произойдет, по крайней мере, в ближайшие десять лет.
Об общего — к частному
Создать универсальный «решатель», на все случаи жизни, оказалось невозможно в 70-х и вряд ли станет возможно когда-либо. Поэтому и возникла идея разрабатывать специализированные консультирующие системы, аккумулирующие знания лучших экспертов в каждой конкретной области. Они должны помогать решать неформализованные или слабо формализованные задачи, например, такие как диагностика, планирование, предсказание, конструирование, управление и т. д. Эти задачи характеризуются прежде всего неполнотой, неоднозначностью, а часто и ошибочностью входных данных; большой размерностью пространства решений; неполнотой и противоречивостью знаний о проблемной области; изменением данных и знаний проблемной области. И экспертные системы способны делать из имеющихся данных не только «традиционные» логические выводы, но и выводы, основанные на нечеткой логике.
Существуют различные классификации экспертных систем — по решаемым задачам, способности работать в реальном времени, по способу представления знаний.
Первые ЭС — «химическая» Dendral (1965 г.) и «медицинская» Mycin (начало 70-х) — были разработаны в Стендфордском университете, они стали классическими и описаны в любом учебнике по ЭС. Обе показали неплохие результаты, с помощью первой написано около двух десятков научных работ, второй мешали проблемы с интерфейсом, а также неясности этического и правового характера («кто будет отвечать если ЭС ошибется?»).
В целом, разработка экспертных систем в 70-80 годы стала очень популярным занятием, тем более что появился язык программирования Prolog, на котором очень удобно формировать базы знаний, состоящие из фактов и правил относительно того, как делать выводы из этих фактов (впрочем, также имеется много других языков программирования и инструментальных средств для создания ЭС).
Поддержка механизма логического вывода отличает базы знаний от баз данных. Базы знаний при этом можно постоянно пополнять новыми фактами и новыми правилами вывода, а также уточнять существующие правила и факты. Пользователь ЭС формулирует описание своей задачи, а машина сама ищет ее решение. Например, сам Prolog представляет собой машину логического вывода, которая на основании база знаний получает некоторый результат обработки запроса пользователя (человека или другой программы), то есть, по существу, проводит доказательство некоторой теоремы. При этом база может пополняться как знаниями, вводимыми человеком, так и полученными в результате работы самой ЭС. Следует отметить этот очень важный момент — в отличие от современных систем ИИ на нейросетях, в ЭС выдаваемое программой решение прозрачно и можно проследить, на основании каких фактов и правил было получено конкретное решение.
Еще одно большое достоинство ЭС — в большинстве случаев ее база знаний может пополняться самими пользователями. Однако экспертные системы все еще остаются весьма сложными, дорогими, а их применение ограничено отраслевыми рамками. Да и с отраслевыми системами есть некоторые проблемы.
А эксперты кто? И зачем им экспертные системы?
Экспертные системы — это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и дающие к ним доступ менее квалифицированным специалистам. От квалификации экспертов и правильно спроектированной базы знаний на 90% зависит качество ЭС.
Информацию для экспертных систем надо получить у экспертов, а потом формализовать. Решением задач по «извлечению» знаний и их формализации для введения в базы знаний занялись специальные «инженеры по знаниям».
Которые столкнулись со вполне понятной проблемой — поскольку эксперты понимали, что пользуясь созданной с их помощью ЭС специалист более низкой квалификации получит знания, которые сами эксперты добывали годами упорного труда, то у них часто отсутствовало желания делиться информацией. Кроме того, часто достаточно трудно формализовать его экспертные знания.
Конечно, БЗ часто, особенно в медицине, формировались по печатным источникам, но в целом это снижало качество выдаваемых рекомендаций.
Также тормозит развитие ЭС трудоемкая работа по ручному пополнению баз знаний. Поэтому еще в 70-е годы была поставлена задача по их автоматическому извлечению из различных источников — статей, книг и интернет-публикаций. Однако сбор таких данных до конца проблемы с получением знаний непосредственно от экспертов не решает.
Во взаимодействии с искусственным интеллектом
В настоящее время экспертные системы применяются достаточно широко, но совершенно без всякого ажиотажа вокруг них. Наиболее популярные области применения ЭС — системы диагностики и ремонта оборудования, проектирования, планирования, составления расписаний, поддержки принятия решений, свою экспертную систему содержит внутри почти любая серьезная компьютерная игра.
В технологическом плане наиболее существенный процесс в жизни экспертных систем — их объединение с системами искусственного интеллекта на основе нейросетей. В таких гибридных системах вместо всей или части базы знаний используется обученная нейронная сеть. Это дает возможность экспертной системе оперировать неполными и недостоверными знаниями, а также быть устойчивой к зашумленным данным. Используются в ЭС и другие современные технологии — облачные, обработки больших данных, Data Mining (для формирования БЗ). Есть попытки создать самообучаемые ЭС.
В России разработкой экспертных систем занимаются очень немногие ИТ-компании, соответствующий рынок у нас так не сложился. Причины все те же: дефицит специалистов, низкая востребованность таких систем и высокая их стоимость. А также — некоторый негатив, оставшийся в ИТ-сообществе от плодов ранних этапов развития ЭС.