Как было показано выше, при переработке сульфидных и окисленных никелевых руд никель и кобальт обычно концентрируются в богатых промежуточных продуктах, за исключением гидрометаллургических технологий, использующих метод жидкостной экстракции, который позволяет производить товарные катодные металлы без промежуточного осаждения концентратов. К этим богатым промпродуктам, пригодным для дальнейшего рафинирования с получением товарных никеля и кобальта, относятся: файнштейн (сульфидные руды), штейн, смешанные никель-кобальтовые гидроксиды (или карбонаты), смешанные никель-кобальтовые сульфиды (окисленные никелевые руды).
Способы переработки сульфидных никелевых продуктов чрезвычайно разнообразны (табл.1.25) и определяются составом и экономическими соображениями с учётом географического положения и исторических особенностей развития конкретных предприятий. Однако обзор мировой практики получения рафинированного никеля показывает практически повсеместное распространение процессов гидрометаллургического рафинирования файнштейна. Наряду с получением никеля электроэкстракцией в мировой практике достаточно широко применяется карбонил-процесс, позволяющий получать никелевую продукцию с высокой добавленной стоимостью. Он реализован на предприятиях Vale: Copper Cliff (Канада) и Clydach (Великобритания), а также на заводе Jinchuan (Китай) компании Jinchuan Group и на комбинате Североникель (АО КГМК, ПАО «ГМК «Норильский никель», Россия). На заводах Copper Cliff и Jinchuan также осуществляют электролитическое рафинирование сульфидных анодов.
На ряде предприятий с целью упрощения технологической схемы Ni-Cu-МПГ файнштейны медленно охлаждают, что способствует раскристаллизации, при этом образуются крупные индивидуальные зерна хизлевудита , халькоцита и металлического (магнитного) сплава. После дробления и измельчения затвердевшего файнштейна методами магнитной сепарации и/или флотации выделяют сплав, сульфидный медный концентрат и сульфидный никелевый концентрат. Такая практика имеет место на рафинировочном заводе Copper Cliff компании Vale, Jinchuan компании Jinchuan Group, рафинировочном заводе базовых металлов (BMR) компании Anglo American Platinum в ЮАР и в России на комбинате Североникель (АО КГМК, ПАО «ГМК «Норильский никель»). Так, на рафинировочном заводе Copper Cliff полученный в результате магнитной сепарации файнштейна металлический концентрат с
65% Ni, 17% Cu и высоким содержанием Au, Ag и МПГ направляется на конвертирование в конвертерах TBRC и далее на карбонилирование. Разделение меди от никеля в немагнитной фракции осуществляется флотацией. Полученный никелевый сульфидный концентрат (
71% Ni, 0,9% Cu) поступает на окислительный обжиг с получением NiO для отправки на завод компании Clydach (Великобритания), где он перерабатывается карбонил-процессом при атмосферном давлении. Медный сульфидный концентрат (
74% Cu, 4% Ni) поступает в медеплавильное производство. Промпродукт (подситовый продукт измельчения и очистки медного концентрата), содержащий
66% Ni и 6,6% Cu, обжигают и далее рафинируют карбонилированием на Copper Cliff.
В настоящее время известно 53 минералов никеля, большинство из которых образовалось при высоких температурах и давлении, а также при застывании магмы или осаждении из горячих водных растворов. Никель также входит в виде изоморфной примеси в несколько десятков минералов, содержащих двухвалентное железо и магний.
Основной объем никеля добывается в месторождениях магматических сульфидных медно-никелевых руд (65 % общего количества добываемого из руд никеля). Основные минералы в рудах этих месторождений пирротин, пентландит, халькопирит, магнетит, встречаются пирит, кубанит, полидимит, никелин, миллерит, виоларит, а также минералы группы платины, галенит, сфалерит и борнит. В России руды этого типа расположены на Кольском полуострове и в районе Норильска. Сульфидные медно-никелевые руды добываются в Канаде, где имеется около 40 месторождений этого типа, в Южной Африке, Австралии, Финляндии,Швеции, Норвегии, США. Содержание никеля в сульфидных рудах составляет от 0,3 до 4 %, а соотношение меди и никеля в маломедистых рудах колеблется от 0,5 до 0,8, в высокомедистых – от 2 до 4. В этих рудах, кроме меди и никеля, повсеместно присутствуют кобальт, а также золото, платина, палладий, рутений, селен, теллур и др.
Характеристика основных никелевых минералов
Минерал
Формула
Массовая доля Ni,%
Плотность, г/см 3
Твердость
От Fe6S9 до Fe11S12
В зависимости от текстурных особенностей сульфидные руды подразделяются на следующие типы:
Вкрапленные руды наиболее распространены среди других никелевых сульфидных руд. Сульфидные минералы в этих рудах распределены между серпентизованными оливином и пироксеном. Соотношение никеля, меди и кобальта составляет 55–50:28–23:1.
Брекчиевидные руды относятся к типу богатых промышленных руд. Содержание их в рудных телах колеблется от 2 до 25 %. Руды состоят из об- ломков оталькованных серпентинитов, филлитов и туффитов, сцементированных мелкозернистой сульфидной массой, состоящей из пирротина, пентландита и халькопирита, содержание которых составляет 60–75 %. Соотношение никеля, меди и кобальта – 56:22:1.
Сплошные сульфидные руды тесно связаны с брекчиевидными в нижних частях рудных тел. Они состоят преимущественно из пирротина (60–80 %), пентландита и халькопирита. Крупность зерен пентландита может достигать 5–10 мм. Соотношение никеля, меди и кобальта в рудах составляет 35–25:17–14:1.
Силикатные никелевые руды характеризуются невысоким содержанием никеля ( до 1%) при соотношении никеля и кобальта 20…30 : 1. Добыча никеля из силикатных руд в общем производстве никеля составляет не более 15…20%, причем перерабатываются эти руды без предварительного обогащения.
Медно-никелевые руды обогащаются по прямым селективным, коллективно-селективным и комбинированным схемам.
По схеме селективной флотации обогащаются сплошные руды рудника «Комсомольский».
Эти руды характеризуются различной флотационной активностью сульфидных минералов, которые можно расположить по уменьшению флотируемости в следующей последовательности: халькопирит ( талнахит, моихукит, кубанит ), пентландит и никеленосный пирротин, пирротин. Селективная флотация медных и никелевых минералов происходит прежде всего за счет различной скорости окисления сульфидной поверхности. Никелевые сульфидные минералы хорошо и быстро окисляются, в то время как халькопирит окисляется значительно медленнее.
Сплошные сульфидные руды рудника «Комсомольский» после среднего и мелкого дробления направляются на измельчение, которое осуществляется в две стадии до крупности 80 % класса –0,05 мм. Содержание твердого в сливе гидроциклонов II стадии измельчения достигает 20 %, поэтому слив сгущается до 34 % твердого, при этом удаляется около 50 % воды. Сгущенный продукт затем идет в три контактных чана, куда подается воздух для окисления поверхности сульфидных минералов. После перемешивания в течение 15 мин никелевые минералы подавляются и несколько повышается флотоактивность медных сульфидных минералов. I основная флотация проводится в присутствии этилового дитиофосфата (7 г на 1 % Cu), Т-66 (12 г/т) и МИБК (6–10 г/т). После контрольной флотации, где в пенный продукт доизвлекаются сростки сульфидных минералов при подаче этилового дитиофосфата (1,5 г на 1 % Cu) и Т-66 (2 г/т), выделяются хвосты, направляемые на I флотацию пентландита, где ксантогенатом (25 г/т) извлекаются его крупные зерна. Хвосты I флотации пентландита доизмельчаются до крупности 92 % класса –0,044 мм с предварительной и поверочной классификацией для предотвращения его ошламования. Хвосты II пентландитовой флотации являются готовым пирротиновым концентратом, содержащим 2 % Ni и 0,4 % Cu.
Никель относится к переходным металлам первого длинного периода и в периодической системе Д.И. Менделеева располагается в VIIIA подгруппе вместе с железом и кобальтом.
Никель кристаллизуется в кубической гранецентрированной решетке с периодом при комнатной температуре, равным 0,352387 нм. Атомный диаметр никеля – 0,248 нм. Плотность никеля (8,897 г/см 3 ) почти такая же, как у меди, и в два раза превышает плотность титана, так что никель относят к числу тяжелых цветных металлов.
Физические свойства никеля приведены в табл. 7. Скрытая теплота плавления никеля примерно такая же, как у магния, и несколько больше, чем у алюминия. Его удельная теплоемкость сравнительно невелика и лишь немного превышает теплоемкость меди. Удельная электро- и теплопроводность никеля меньше, чем у меди и алюминия, но значительно превышает электро- и теплопроводность титана и многих других переходных металлов. Модули упругости у никеля примерно такие же, как у железа.
Никель – ферромагнитный металл, но его ферромагнетизм выражен значительно меньше, чем у железа и кобальта. Точка Кюри для никеля составляет 358 ˚С, выше этой температуры никель переходит в парамагнитное состояние.
Чистый никель – металл серебристого цвета. При высокотемпературном окислении никеля образуются два оксидных слоя: внутренний – светло-зеленый и внешний – темно-зеленый. Два этих слоя состоят из оксида, но отличаются количеством кислорода.
Никель характеризуется более высокой коррозионной стойкостью в атмосферных условиях по сравнению с другими техническими металлами, что обусловлено образованием на его поверхности тонкой и прочной защитной пленки. Никель обладает достаточной устойчивостью не только в пресной, но и в морской воде. Минеральные кислоты, особенно азотная, сильно действуют на никель. Щелочные и нейтральные растворы солей на никель влияют незначительно даже при нагревании, в кислых растворах солей он корродирует довольно сильно. В концентрированных растворах щелочей никель устойчив даже при высоких температурах.
Никель при комнатной температуре не взаимодействует с сухими газами, но присутствие влаги заметно повышает скорость его коррозии в этих средах. Никель, загрязненный кислородом, склонен к водородной болезни.
Сырье для получения никеля
В настоящее время никелевые заводы перерабатывают в основном два типа руд, резко различающихся по химическому составу и свойствам: окисленные никелевые и сульфидные медно-никелевые. Значение этих руд для отечественной никелевой промышленности и за рубежом различно. В России из года в год возрастает доля никеля, получаемого из сульфидных руд, а в зарубежных странах, наоборот, все большее значение приобретают окисленные руды.
Окисленные никелевые руды представляют собой горные породы вторичного происхождения, состоящие в основном из гидратированных магнезиальных силикатов, алюмосиликатов и оксида железа. Никелевые минералы в них составляют незначительную часть рудной массы. Наиболее часто никель находится в виде бунзеита (NiO), гарниерита [(Ni, Mg)O · SiO3 · nH2O] или ревденскита [3(Ni, Mg)O · 2SiO2 · 2H2O]. Кроме никеля полезным компонентом этих руд является кобальт, содержание которого обычно в 15…25 раз меньше содержания никеля. Иногда в окисленных рудах присутствует в небольших количествах медь (0,01…0,02 %).
Пустая порода, составляющая основную массу руды, представлена глиной Al2O3 · 2SiO2 · 2H2O, тальком 3MgO · 4SiO2 · 2H2O, другими силикатами, бурым железняком Fe2O3 · nH2O, кварцем и известняком.
Окисленные никелевые руды отличаются исключительным непостоянством состава по содержанию как ценных компонентов, так и пустой породы. Эти колебания состава наблюдаются даже в массиве одного месторождения. Возможные пределы концентраций компонентов руды характеризуются следующими цифрами, %: Ni – 0,7…4; Co – 0,04…0,16; SiO2 – 15…75; Fe2O3 – 5…65; Al2O3 – 2…25; Cr2O3 – 1…4; MgO – 2…25; CaO – 0,5…2; конституционная влага – до 10…15.
По внешнему виду окисленные никелевые руды похожи на глину. Для них характерны пористое, рыхлое строение, малая прочность кусков, высокая гигроскопичность. Рациональных методов обогащения таких руд до сих пор не найдено, и они после соответствующей подготовки непосредственно поступают в металлургическую переработку.
В сульфидных рудах никель присутствует главным образом в виде пентландида, представляющего изоморфную смесь сульфидов никеля и железа переменного соотношения, и частично в форме твердого раствора в пирротине.
Основным спутником никеля в сульфидных рудах является медь, содержащаяся главным образом в халькопирите. Из-за высокого содержания меди эти руды называют медно-никелевыми. Кроме никеля и меди в них обязательно присутствуют кобальт, металлы платиновой группы, золото, серебро, селен и теллур, а также сера и железо. Таким образом, сульфидные медно-никелевые руды являются полиметаллическим сырьем очень сложного химического состава. При их металлургической переработке в настоящее время извлекают 14 ценных компонентов.
Химический состав сульфидных медно-никелевых руд следующий, %: Ni – 0,3…5,5; Cu – 0,2…1,9; Co – 0,02…0,2; Fe – 30…40; S – 17…28; SiO2 – 10…30; MgO – 1…10; Al2O3 – 5…8. По структуре медно-никелевые руды могут быть сплошными, жильными и вкрапленными. Чаще встречаются два последних типа руд. В зависимости от глубины залегания руду добывают как открытым, так и подземным способом.
В отличие от окисленных никелевых руд медно-никелевые руды характеризуются высокой механической прочностью, негигроскопичны и могут подвергаться обогащению.
Основным способом обогащения сульфидных медно-никелевых руд является флотация. Иногда флотационному обогащению предшествует магнитная сепарация, направленная на выделение пирротина в самостоятельный концентрат. Возможность проведения магнитной сепарации обусловлена относительно высокой магнитной восприимчивостью пирротина.
Выделение пирротинового концентрата при обогащении руды улучшает качество первичного никелевого концентрата вследствие вывода из него значительной части железа и серы и упрощает его последующую металлургическую переработку. Однако при получении пирротинового концентрата возникает необходимость в обязательной его переработке с целью извлечения никеля, серы и платиноидов.
Флотационное обогащение медно-никелевых руд может быть коллективным или селективным. При коллективной флотации за счет отделения пустой породы получают медно-никелевый концентрат. Однако и селективная флотация не обеспечивает полного разделения меди и никеля. Продуктами селекции в этом случае будут медный концентрат с относительно небольшим содержанием никеля и никелево-медный концентрат, отличающийся от руды более высоким отношением Ni : Cu.
Таким образом, в зависимости от принятой схемы обогащения сульфидных медно-никелевых руд можно получать коллективные медно-никелевые, медные, никелевые и пирротиновые концентраты, состав которых приведен в табл. 8.
Способы получения никеля
Сульфидные руды и окисленные руды перерабатывают различными способами – пиро- и гидрометаллургическими.
Плавка на штейн сульфидных руд и концентратов
Руды с суммарным содержанием больше 2–5 % меди и никеля считают богатыми, их плавят без предварительного обогащения.
Руды и концентраты содержат одни и те же минералы, поэтому к ним могут быть применены после необходимой подготовки одни и те же способы переработки.
При нагревании руды до 400–600 ˚С еще до начала плавления халькопирит и никельсодержащие сульфиды разлагаются:
При температурах, необходимых для плавления шлака, состоящего из окислов пустой породы и флюсов, сульфиды меди, никеля и железа неограниченно растворимы друг в друге; они образуют медно-никелевый штейн, отделяемый от шлака в виде более тяжелого жидкого слоя.
Если часть серы при плавке окислена или удалена предварительным обжигом, распределение меди, никеля и железа между штейном и шлаком будет зависеть от сродства этих металлов к кислороду и сере. В условиях плавки сродство к сере, определяющее возможность перехода металла в штейн, у меди больше, чем у никеля, а у никеля больше, чем у железа. Сродство тех же металлов к кислороду убывает в обратной последовательности. При недостатке серы для сульфидирования всех металлов сначала будет переходить в штейн медь, затем никель и, наконец, часть железа. Чем больше железа перейдет в штейн, тем больше полнота сульфидирования меди и никеля, но штейн, разбавленный сернистым железом, будет бедным. Для полного перевода никеля в штейн при плавке руды или концентрата не стремятся к полному шлакованию железа, оставляя часть его в штейне.
Кобальт по сродству к сере и кислороду занимает промежуточное положение между железом и никелем.
Основной продукт конвертерного передела – медно-никелевый файнштейн – представляет собой сплав сульфидов меди и никеля, содержащий 1–3 % железа.
Кобальт при продувке частично шлакуется вместе с железом.
Конвертерный шлак иногда направляют в отдельный передел для извлечения кобальта. Благородные металлы концентрируются почти полностью в файнштейне.
Никелевый концентрат обжигают, окисляя его по реакции
Полученный таким образом серый порошок закиси никеля, содержащий окислы кобальта и платиновые металлы, восстанавливают углем в электропечах до металла, который разливают в аноды.
Никелевые аноды подвергают электролитическому рафинированию, попутно извлекая из электролита кобальт и остаток меди, а из шлама – платиноиды.
Богатые крупнокусковые медно-никелевые руды плавят на штейн в шахтных печах, если пустая порода этих руд не слишком тугоплавка. В ряде случаев для руд, содержащих много окиси магния или другие тугоплавкие составляющие, приходится прибегать к электроплавке.
Флотационные концентраты и мелкие фракции богатых руд плавят в отражательных или электрических печах; при высоком содержании серы в этих материалах применяют предварительный обжиг.
Выбор способа плавки во многом зависит от состава сырья и местных экономических условий, в частности от наличия того или иного топлива и цены на электроэнергию.
Гидрометаллургический способ переработки сульфидных руд
По этому способу измельченную руду или концентрат обрабатывают раствором аммиака и (NH4)2SO4 в автоклавах под избыточным давлением воздуха около 506,7 кн/м 2 (7ат). Медь, никель и кобальт переходят в раствор в виде комплексных аммиачных солей, например по реакции
Отфильтрованный раствор кипятят для осаждения меди по реакции
После этого частично оставшуюся в растворе медь осаждают сероводородом, а очищенный от нее раствор, содержащий никель и кобальт, обрабатывают в автоклаве водородом при давлении около 2,5 Мн/м 2 (25 ат) и температуре около 200 ºС.
Сначала осаждается основная масса никеля
в виде частиц крупностью от 2 до 80 мкм. Отфильтровав осадок, остаток никеля и кобальт выделяют из раствора сероводородом.
При дальнейшей обработке осадка сульфидов кислородом и аммиаком в автоклаве растворяется кобальт. Нерастворимый осадок, содержащий преимущественно сульфид никеля, возвращают на основное выщелачивание, а из раствора действием водорода под давлением выделяют кобальт.
Схема сложна и требует дорогой аппаратуры; однако она позволяет извлекать из комплексных концентратов до 95 % Ni, около 90 % Сu и 50–75 % Со.
Плавка окисленных руд на штейн
Наиболее распространенный в настоящее время способ переработки окисленных никелевых руд плавкой на штейн основан на различии сродства железа и никеля к кислороду и сере.
Никель путем сульфидирования переводится в штейн – сплав Ni3S2 и FeS; основная масса железа удаляется со шлаком:
Окисленные руды не содержат серы, поэтому ее приходится вводить, добавляя при плавке пирит или гипс. Гипс, восстанавливаясь до сернистого кальция, сульфидирует железо и никель. Действие гипса при плавке более сложно, чем действие пирита, однако во многих случаях все же пользуются гипсом, а не пиритом, так как гипс дешевле пирита и не дает железистых шлаков.
Наиболее выгодно при переработке окисленных никелевых руд применять местный кобальтсодержащий пирит, в котором очень мало меди и нет благородных металлов.
Никелевый штейн, полученный в результате плавки руды с пиритом или гипсом, содержит до 60 % Fe, которое далее отделяют от никеля продувкой жидкого штейна в конвертере. При конвертировании происходит избирательное окисление железа и шлакование его добавляемым в конвертер кварцем – получается практически чистый от железа никелевый файнштейн. Конвертерный шлак богат никелем, поэтому он является оборотным продуктом – его возвращают в рудную плавку либо направляют на отдельную переработку для извлечения кобальта.
Файнштейн разливают в изложницы, затем измельчают и обжигают намертво:
Закись никеля смешивают с малосернистым восстановителем, например с нефтяным коксом, и плавят в электрической печи при 1500 ºС, получая жидкий никель.
Никель отливают в аноды для электролитического рафинирования либо гранулируют, сливая его тонкой струей в воду.
Плавка окисленных руд на никелистый чугун (ферроникель)
Богатые окисленные руды иногда плавят в электрических печах с углем, восстанавливая из них все железо, никель и кобальт в природнолегированный чугун.
Подобную плавку сравнительно бедных руд проводят и в доменных печах, однако она имеет ограниченное применение.
Несмотря на преимущественное использование никеля в специальных сталях, выплавка его в виде сплава с железом не всегда приемлема: в сплав переходят кобальт, марганец, хром и другие примеси, случайные сочетания которых не всегда позволяют использовать ценные свойства этих металлов.
Кричный способ переработки окисленных руд
По этому способу руду, смешанную с углем, нагревают в трубчатых вращающихся печах при температуре около 1050 ºС, позволяющей восстановить вместе с никелем и кобальтом только часть железа. Восстановленные металлы получаются в виде зерен, смешанных с полурасплавленным шлаком. Охлажденный шлак дробят и извлекают из него кричный сплав электромагнитом. Способ не получил широкого распространения по тем же причинам, что и предыдущий, – из-за невозможности отдельного использования кобальта.
Гидрометаллургия окисленных руд
По одному из этих способов, известному в литературе под названием кубинского, измельченную руду подвергают восстановительному обжигу в механических многоподовых печах в среде генераторного газа. При 600–700 ºС никель и кобальт восстанавливаются до металлов, а железо – только до закиси. Далее руду выщелачивают раствором аммиака в присутствии углекислоты и кислорода воздуха. Никель образует растворимые в воде аммиакаты по реакции
После отделения пустой породы сгущением и промывкой раствор обрабатывают острым паром. В результате удаления избытка аммиака протекает гидролиз с выделением в осадок основных карбонатов никеля:
Аммиак из газов поглощают водой и вновь направляют на выщелачивание. Закись никеля спекают на агломерационных машинах и в виде спека поставляют на сталеплавильные заводы.
Никоненко2 Евгения Алексеевна, Габдуллин2 Альфред Нафитович
и Катышев1* Сергей Филиппович
1 Кафедра технологии неорганических веществ. Химико-технологический институт. Уральский федеральный университет имени первого президента Ул. Мира, 27. г. Екатеринбург,
2 Кафедра общей химии. Институт фундаментального образования. Уральский федеральный университет имени первого президента Ул. Мира, 27. г. Екатеринбург, 620002. Свердловская область. Россия. Тел.: (343) 375-45-68. *****@***ru
В связи с увеличением спроса на никель возникает необходимость в разработке новых технологий извлечения никеля из бедных и труднообогатимых руд. Целью настоящей работы является получение из никелевой руды Серовского месторождения концентрата с высоким содержанием никеля. Согласно данным химического и рентгенофазового анализов руда является высококремнистым магнезиальным сырьем, в составе которого присутствуют минералы лизардит, нимит, тальк. При вскрытии руды азотной кислотой в раствор переходят ионы никеля (II), железа (III), алюминия и магния. Для раздельного осаждения из азотнокислых растворов ионов железа (III) и никеля (II) использован щелочной осадитель (суспензия оксида магния в водном растворе нитрата магния) не загрязняющий конечный раствор посторонними ионами. Активность осадителя приготовленного разными способами (добавление нитрата магния, ультразвуковое диспергирование) определяли по лимонному числу. Высокая активность осадителя достигается комбинацией 2 способах: добавлением в суспензию нитрата магния и обработкой в поле ультразвука. При диспергировании размер твердых частиц оксида магния уменьшается в результате увеличивается его растворимость и возрастает количество гидроксид ионов. В результате в качестве осадителя использовали суспензию оксида магния в нитратном растворе, обработанного в поле ультразвука. Осаждение никелевого концентра проводили в 2 стадии при рН 7-8. Для определения химического и фазового состава применяли следующие современные методы анализа: энергодисперсионный, рентгеннофлуоресцентный, спектральный, рентгенофазовый и электронной микроскопии. Содержание оксида никеля в концентрате составило 39%. Согласно рентгенофазового анализа в нем содержится оксид никеля (II), оксид алюминия и смесь оксидов никеля и марганца. Микрофотографии показали не однородность концентрата. На поверхности частиц присутствуют мелко кристаллические образования. Согласно составу полученный концентрат может быть использован в качестве добавки к сырью для получения никеля, для переработки электролизом раствора, сорбции или жидкостной экстракции.
В настоящие время в связи с истощением богатых месторождений более значимым является освоение бедных и труднообогатимых руд. Использование обедненных руд требует применения сложных технологий. С количественным ростом потребления полезных иско-паемых возникают качественно новые технологические проблемы: создание эффективных и высокопроизводительных процессов; освоение развитых схем переработки, обеспечивающих комплексное извлечение из руды всех ценных компонентов.
В связи с увеличением потребления никеля, возникает необходимость поиска новых месторождений сырья. Одним из них являются никелевые руды – руды вторичного проис-хождения, образованные в результате выветривания ультраосновных серпентинитовых пород. Из-за высокого содержания оксида магния никелевые руды Урала непригодны для метал-лургии никеля. В связи с этим необходимо было разработать другой способ извлечения никеля из руды.
В качестве сырья использовали руду Серовского месторождения. Химический анализ проводили с помощью рентгено-флуоресцентного спектрометра NITON XLt 800. Руда имеет следующий хими-ческий состав (% масс.): SiO2 42.7-43.89; МgО 13.73-34.1; FeО 14.8-31.32; Сг2О3 0.17-1.82; NiО 2.39-2.44; МnО 0.01-0.47; Аl2О3 4.10-4.91; СаО 0.22-0.34; п. п.п. 0.92-1.71.
Для определения минералогического состава применяли метод рентгенофазового анализа. Дифрактограмма была получена на приборе STADI-P (STOE, Germany) в CuКα-излучении и интервале углов 2и от 2° до 70° при шаге 0.03° при комнатной температуре. В качестве внешнего стандарта использовали поликристаллический кремний (а = 5.43075(5) Е). Фазовая чистота образца проверялась путем сравнения рентгенограммы с данными картотек порошкограмм PDF2 (Powderdiffractionfile, ICDD, США). Минералогический состав руды представлен в табл. 1. Основными минералами в руде являются лизардит, нимит, тальк.
При переработке никелевой руды Серовского месторождения азотнокислотным способом образуется нитратный раствор, содержащий ионы Ni2+, Fe3+, Al3+, Mg2+ и другие [1, 2]. Для получения никелевого концентрата необходимо было произвести дробное осаждение присутствующих в растворе указанных выше ионов металлов. В качестве осадителя использовали оксид магния [3]. Его суспензию готовили следующим образом: прокаленный при 600 °С оксид магния смешивали с водой в мольном соотношении 1:20 и подвергали ультразвуковому диспергированию в течении 7.5 минут. Затем в суспензию добавлялинитрат магния (MgO:Mg(NO3)2 = 1:1). Приготовленный таким образом осадитель использовался для дробного выделения ионов Ni2+, Fe3+.
Табл. 1. Минералогический состав никелевой руды Серовского
месторождения согласно результатам рентгенофазового анализа