Низкоимпедансные конденсаторы что это
Низкоимпедансные конденсаторы что это
ОСОБЕННОСТИ КОНДЕНСАТОРОВ С НИЗКИМ ESR
До последнего времени четкое определение конденсатора с низким ESR отсутствовало. Такие стандарты, как JIS5141 и EIA395, касаются только процедур испытаний конденсаторов. Отсутствие стандартов заставило отдельных производителей самостоятельно определять, что же значит конденсатор с низким ESR. В итоге большинство поставщиков установили согласованный критерий, определяющий такие конденсаторы как элементы, у которых:
· срок службы больше, чем у стандартных конденсаторов;
· максимальный импеданс задается на частоте 100 кГц и остается неизменным в диапазоне температур +20…-10°С;
· пульсирующий ток определяется на частоте 100 кГц;
· повышенная температурная стабильность (температурный коэффициент импеданса).
Конденсаторы с низким ESR одного и того же номинала могут монтироваться в корпуса различных размеров.
Для лучшего понимания того, что же представляют собой конденсаторы с низким ESR и каковы их характеристики, необходимо сначала понять, что же значит низкое ESR и как оно влияет на рабочие характеристики схемы.
Эквивалентная схема конденсатора содержит четыре основных элемента (рис.1), причем значения трех – импеданса конденсатора (Z), эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL) – зависят от частоты. Значение Rp зависит от постоянного тока. Рассмотрим лишь зависящие от частоты характеристики конденсатора – ESL, ESR и Z.
ESL – сумма индуктивностей всех индуктивных элементов конденсатора. ESL = 2PIЧfЧL, где f – рабочая частота и L – индуктивность.
ESR, подобно ESL, – сумма всех резистивных элементов конденсатора. ESR = DF/(2PIЧfЧC)ЧХс, где DF – коэффициент рассеяния,
f – частота, С – емкость и Хс – емкостное сопротивление,
.
Z – импеданс конденсатора. Z = Ц(ESR)2 + (ESL – Xc)2.
Зависимости этих параметров от частоты приведены на рис.2.
Частотные зависимости параметров всех конденсаторов имеют одинаковый характер. Таким образом, для уменьшения ESR следует использовать конденсатор либо большей емкости, либо с меньшим коэффициентом рассеяния. Уменьшение ESR с увеличением емкости конденсатора хорошо понятно и не требует объяснений. Уменьшение ESR за счет применения диэлектрика с меньшим коэффициентом рассеяния наглядно иллюстрирует табл.1, из которой можно сделать несколько важных выводов.
Во-первых, если обратить внимание на частоты, для которых рассчитывалось значение ESR, можно отметить, что с увеличением частоты значение ESR уменьшается. Поэтому при задании в технических условиях на конденсатор с низким ESR требуемого значения эквивалентного последовательного сопротивления необходимо также указывать частоту, на которой ESR измеряется, в противном случае велика вероятность неправильного выбора конденсатора. На рис.3 приведена типовая зависимость ESR от частоты для танаталового конденсатора емкостью 22 мкФ на напряжение 25 В.
Важна и температура, которую необходимо учитывать при оценке конденсатора, особенно если он должен работать при минусовых температурах. Это в первую очередь существенно для алюминиевых электролитических конденсаторов. При очень низких температурах емкость этих конденсаторов может уменьшиться на 10–40%, а DF возрасти на порядок. Поэтому конденсаторы, которые должны работать при низких температурах окружающей среды, необходимо выбирать очень тщательно.
Во-вторых, у конденсаторов с различными диэлектриками различны и значения ESR. Меняя диэлектрик, можно изменять значение ESR. Следует обратить внимание на существенное различие между значениями ESR для алюминиевых электролитических и полипропиленовых конденсаторов.
ОБЛАСТИ ПРИМЕНЕНИЯ
Различны и значения ESR для пленочных и алюминиевых электролитических конденсаторов. Эти различия определяют предпочтительные области применения каждого типа. К достоинствам пленочных конденсаторов относятся, в первую очередь, независимая полярность конструкции, высокое рабочее напряжение, малые значения емкости, жесткие допуски на значение емкости, самовосстановление (только металлизированная конструкция), высокая безотказность, стойкость к большому току пульсации, разнообразие форм выводов и корпусов. Применяются пленочные конденсаторы, как правило, в системах, где требуется низкое ESR для подавления электромагнитных и радиопомех.
Алюминиевые электролитические конденсаторы широко используются в импульсных преобразователях напряжения. Выпускаются они различных, отличающихся по своим параметрам, типов (табл.2). Так, в сравнении со стандартными, алюминиевые электролитические конденсаторы с низким ESR характеризуются большими значениями емкости, большим сроком службы (более 5 тыс. часов) и долговечностью при полной нагрузке, способностью выдерживать более высокие токи пульсации, большим разнообразием размеров корпусов.
Самые большие различия получены для таких параметров, как долговечность при полной нагрузке, импеданс (Z) и ESR на частоте 100 кГц. Конденсаторы с малыми значениями ESR и импеданса широко используются в импульсных источниках питания для обеспечения стабильности их характеристик. Конденсаторы с высокими значениями ESR будут слишком нагреваться и не позволят стабилизировать ток. Очевидно, саморазогрев конденсаторов также приводит к сокращению их срока службы и, соответственно, к ухудшению характеристик и срока службы стабилизатора на токовых ключах. К тому же, максимальное значение тока пульсации низкоимпедансных конденсаторов больше, чем у стандартных, что позволяет сократить число используемых элемнтов и, тем самым, уменьшить размеры преобразователя.
В качестве примера на рис.4 приведена зависимость напряжения пульсаций на ИС от ESR конденсатора, используемого в цепи развязки по питанию. Комментарии, как говорится, излишни.
Таким образом, если в схеме необходимо использовать конденсаторы с низким ESR, в первую очередь следует определить допустимые пределы значения эквивалентного сопротивления и выбрать компоненты, «соответствующие» требованиям. При этом важно знать условия, при которых производитель проводил испытания, поскольку их характеристики существенно влияют на работу конденсатора в схеме. Серьезную техническую поддержку при выработке требований и рекомендаций по выбору нужного типа конденсатора оказывают разработчикам такие изготовители, как Teapo Electronics и Illinois Capacitor.
ЗАКЛЮЧЕНИЕ
Ведущие мировые компании по производству конденсаторов уделяют очень большое внимание конденсаторам с низким ESR. Например, Teapo Electronic Corporation, специализирующаяся на выпуске высококачественных алюминиевых электролитических и пленочных конденсаторов, предлагает алюминиевые электролитические низкоимпедансные конденсаторы с низким ESR на рабочую температуру до 105°C серий SC (срок службы 3 тыс. ч при температуре 105°C ) и SX (5 тыс. ч при температуре 105°C ).
Но, пожалуй, нигде, кроме России, нельзя встретить столь вопиющее неcоответствие между назначением изделия и уровнем (откровенно низким) используемой элементной базы. Например, вряд ли где-либо еще в дорогой системе промышленной автоматики можно найти плохие «электролиты». И это не у одного какого-либо производителя. Это – общая беда российской электронной промышленности последних лет. Правда, сегодня ситуация меняется. Качественные конденсаторы, в том числе и с низким ESR, по цене лишь незначительно превосходящие стандартные, становятся доступными отечественному производителю. К тому же, меняется и его менталитет. И это дает надежду на то, что изделия с маркой «Сделано в России» в реальности, а не на бумаге, не будут уступать лучшим зарубежным аналогам.
Компания ПОЛИСЭТ представляет на российском рынке весь спектр высококачественных электролитических и пленочных конденсаторов фирмы Teapo Electronic, а также танталовые электролитические конденсаторы фирмы Samsung Electro-Mechanics.
Тел.: (095) 967-0591; www.poliset.ru; info@poliset.ru
Литература
www.yageo.com
www.teapo.com.tw
www.sem.samsung.com/
Aluminium Electrolytic Capacitors Catalogue, 2001, Teapo Electronic Corporation.
R.W. Franklin, Equivalent Series Resistance of Tantalum Capacitors, AVX Limited, 2001
Passive Component Industry, September/October 2001
R.K. Keenan, Decoupling and layout of Digital Printed Circuits,198
Пролезет ли конденсатор в игольное ушко?
В конце октября 2001 года фирма Samsung Electro-Mechanics выпустила самый миниатюрный в мире многослойный керамический конденсатор для поверхностного монтажа (SMD MLCC) марки 0603MLCC. Размер конденсатора 0,6х0,3 мм, а объем составляет всего лишь одну пятую от объема его предшественника. Конденсатор столь мал, что практически не виден невооруженным глазом. Поэтому производственный процесс полностью автоматизирован. Фирма выпускает конденсатор двух типов: X7R (стандартный) и NPO (с низким эквивалентным последовательным сопротивлением).
Сейчас Samsung Electro-Mechanics ежемесячно выпускает около 30 млн. конденсаторов, в 2002 году объем их производства будет увеличен. Сегодня фирма Samsung Electro-Mechanics контролирует около 30% мирового рынка многослойных керамических конденсаторов и в ближайшее время намерена стать их крупнейшим производителем.
Скорость передачи 10 Гбайт/с
По медным проводам
Утверждение, что скорость передачи 10 Гбайт/с доступна лишь для оптического волокна, опровергает соединитель модели Connector–X фирмы Winchester Electronics, способный поддерживать передачу 12 различных пар сигналов с такой скоростью. Это в три-четыре раза выше, чем у современных соединителей медных проводов. Плавкие кнопочные контакты соединителя, напоминающие миниатюрные стальные подушечки для чистки кастрюль, выдерживают 250 циклов сочленения. Для обеспечения контакта соединителя с токопроводящими линиями печатной платы (которая может выполняться на достаточно дешевом материале FC-4) не нужны отверстия, достаточны лишь две крепежные точки. Это позволяет снизить стоимость сборки, улучшить выход годных и предотвратить сбои в передаче сигнала. Цена соединителя длиной 1 дюйм (25,4 мм) – 250–300 долларов.
Процесс восстановления пластин GaAs
Старые не хуже новых
Фирма Exsil разработала процесс восстановления арсенидгаллиевых пластин для их повторного использования в производстве активных приборов и микросхем. Возможность применения таких пластин весьма перспективна, особенно если вспомнить, что стоимость “первичных” GaAs-пластин на порядок выше, чем кремниевых, – 350–450 долл. при диаметре150 мм. За восстановленную пластину нужно заплатить всего 85–100 долл. Линия фирмы предназначена для восстановления пластин GaAs диаметром 100 и 150 мм, которые по своим параметрами не уступают, а в некоторых случаях превосходят первичные пластины.
Electronic News, 2001, Nov.15.
Электроника движет ростом затрат на НИОКР
По данным отделения технологической политики Министерства торговли США, затраты на НИОКР в 2000 году (самые последние точные данные на сегодня) составили 162,7 млрд. долл., что на 9,3% больше, чем в предыдущем году (145, 6 млрд. долл.). Затраты на НИОКР могут служить серьезным индикатором потенциального роста экономики страны и тенденций развития технологии. Большая часть инвестиций (67%) сосредоточена в двух областях – производство и услуги информационной и электронной технологии и медицинские средства и устройства. При этом на НИОКР в области информационной и электронной технологии было затрачено 47,2% общих корпоративных средств, что на 16,3% больше, чем в 1999 году (в остальных секторах американской экономики рост составил всего 3,7%). Сократились затраты на НИОКР в области аэрокосмических исследований и химической промышленности.
ESR конденсатора
ESR — оно же эквивалентное последовательное сопротивление — это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.
Реальные параметры конденсатора
Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?
r — это сопротивление диэлектрика и корпуса между обкладками конденсатора
С — собственно сама емкость конденсатора
ESR — эквивалентное последовательное сопротивление
ESI (чаще его называют ESL) — эквивалентная последовательная индуктивность
Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:
r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.
С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.
ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.
Где «прячется» ESR в конденсаторе
ESR представляет из себя сопротивление выводов и обкладок
Как вы знаете, сопротивление проводника можно узнать по формуле:
ρ — это удельное сопротивление проводника
l — длина проводника
S — площадь поперечного сечения проводника
Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок 😉 Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.
Почему вредно большое значение ESR
Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?
На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).
Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:
где, ХС — это сопротивление конденсатора, Ом
П — постоянная и равняется приблизительно 3,14
F — частота, измеряется в Герцах
С — емкость, измеряется в Фарадах
Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:
I — это сила тока, в Амперах
R — сопротивление резистора ESR, в Омах
Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.
Догоняете о чем я вам толкую? 😉
Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора, как ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже «плавает» емкость, то вслед за ней «плывет» и схема.
ESR электролитических конденсаторов
В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.
У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной ( ну той, которая написана на самом конденсаторе)
Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) — то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту — очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).
Таблица ESR
Как я уже сказал, ESR в основном проверяют именно у электролитических конденсаторов, потому что они используются в импульсных блоках питания. Вот небольшая табличка для максимально допустимых значений ESR для новых электролитических конденсаторов в зависимости от их рабочего напряжения:
Как измерить ESR
Давайте замеряем некоторые наши китайские конденсаторы на ESR. Для этого берем наш многофункциональный универсальный R/L/C/Transistor-metr и проведем несколько замеров:
Первым в бой идет конденсатор на 22 мкФ х 25 Вольт:
Емкость близка к номиналу. ESR=1,9 Ом. Если посмотреть по табличке, то максимальный ESR=2,1 Ом. Наш конденсатор вполне укладывается в этот диапазон. Значит его можно использовать в высокочастотных цепях.
Следующий конденсатор 100 мкФ х 16 Вольт
ESR=0,49 Ом, смотрим табличку… 0,7 максимальный. Значит тоже все ОК. Можно тоже использовать в ВЧ цепях.
И возьмем конденсатор емкостью побольше 220 мкФ х 16 Вольт
Максимальный ESR для него 0,33 Ом. У нас же высветило 0,42 Ома. Такой конденсатор уже не пойдет в ВЧ часть радиоаппаратуры. А в простые схемки, где гуляют низкие частоты (НЧ) сгодится в самый раз! ;-).
Конденсаторы с низким ESR
В нашем бурно-развивающемся мире электроника все больше строится именно на ВЧ части. Импульсные блоки питания почти полностью одержали победу над громоздкими трансформаторными блоками питания. Это мы, радиолюбители, до сих пор пользуемся самопальными блоками питания, сделанные из трансформаторов, которые нашли на помойке.
Но раз почти вся техника уходит в ВЧ диапазон, то и разработчики радиокомпонентов тоже не спят. Они создают конденсаторы, у которых низкий ESR и называются такие конденсаторы LOW ESR, что значит кондеры с низким ESR. На некоторых это пишут прямо на корпусе:
Отличительной чертой таких конденсаторов является то, что они вытянуты в длину. Также, по моим наблюдениям, на них чаще всего есть полоска золотого цвета:
Сейчас все чаще используют миниатюрные полимерные алюминиевые конденсаторы с низким ESR:
Где же их можно чаще всего увидеть? Конечно же, разобрав свой персональный компьютер. Можно найти их в блоке питания, а также на материнской плате компьютера.
Самым маленьким ESR обладают керамические и SMD-керамические конденсаторы
Интересное видео по теме:
Заключение
Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток ;-). Не поленитесь также купить или собрать прибор ESR-метр. Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.
Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.
Введение
Частотные характеристики конденсаторов являются важными параметрами, которые необходимы для разработки схем. Понимание частотных характеристик конденсатора позволит вам определить, например, какие шумы может подавлять конденсатор или какие флуктуации напряжения цепи питания он может контролировать. Эта статья описывает два типа частотных характеристик: |Z| (импеданс или полное сопротивление) и ESR (эквивалентное последовательное сопротивление конденсатора).
Частотные характеристики конденсаторов
Рисунок 1. Идеальный конденсатор
(1)
Из формулы 1 видно, что с увеличением частоты импеданс конденсатора уменьшается. Это показано на рисунке 1. В идеальном конденсаторе нет потерь и эквивалентное последовательное сопротивление (ESR) равно нулю.
Рисунок 2. Частотная характеристика идеального конденсатора
В реальном конденсаторе (рис. 3) существует некоторое сопротивление (ESR), вызванное диэлектрическими потерями, потерями на сопротивлении обкладок конденсатора и потерями связанные с сопротивлением утечки, а также паразитная индуктивность (ESL) выводов и обкладок конденсатора. В результате частотная характеристика импеданса принимает V образную форму (или U образную в зависимости от типа конденсатора), как показано на рисунке 4.Также на рисунке показана частотная характеристика ESR.
Рисунок 3. Реальный конденсатор
Рисунок 4. Пример частотной характеристики реального конденсатора
Причина, по которой графики |Z| и ESR имеют такой вид как на рисунке 4, можно объяснить следующим образом.
Низкочастотная область
|Z| в этой области уменьшается обратно пропорционально частоте, как и в идеальном конденсаторе. Значение ESR определяется диэлектрическими потерями в конденсаторе.
Область резонанса
Высокочастотная область
(2)
Итак, мы рассмотрели частотную характеристику реального конденсатора. Здесь важно запомнить, что c повышением частоты ESR и ESL уже нельзя игнорировать. Поскольку существуют большое количество приложений, в которых конденсаторы используются на высоких частотах, ESR и ESL становятся важными параметрами, характеризующими конденсатор помимо значения его емкости.
Частотные характеристики конденсаторов различных типов
Паразитные составляющие реальных конденсаторов имеют различное значение в зависимости от их типа. Давайте посмотрим на частотные характеристики разных конденсаторов. На рисунке 5 показаны графики |Z| и ESR для конденсаторов емкостью 10 мкФ. Все конденсаторы, кроме пленочных, планарные (SMD).
Рисунок 5. Частотные характеристики конденсаторов разных типов.
Для всех типов конденсаторов |Z| ведет себя одинаково до частоты 1 кГц. После 1 кГц импеданс увеличивается сильнее в алюминиевых и танталовых электролитических конденсаторах, чем в монолитных керамических и пленочных конденсаторах.
Это происходит из-за того, что алюминиевые и танталовые конденсаторы имеют высокое удельное сопротивление электролита и большое ESR. В пленочных и монолитных керамических конденсаторах используются металлические материалы для электродов и, следовательно, они обладают очень маленьким ESR.
Монолитные керамические конденсаторы и пленочные показывают примерно одинаковые характеристики до точки собственного резонанса, но у монолитных керамических конденсаторов резонансная частота выше, а |Z| в индуктивной области ниже.
Эти результаты показывают, что импеданс монолитных керамических конденсаторов SMD типа в широком диапазоне частот имеет небольшое значение. Это делает их наиболее подходящими для высокочастотных приложений.
Частотные характеристики монолитных керамических конденсаторов
Существует также несколько типов монолитных керамических конденсаторов, изготовленных из различных материалов и имеющих различную форму. Давайте посмотрим, как эти факторы влияют на частотные характеристики.
ESL
ESL монолитных керамических конденсаторов сильно зависит от внутренней структуры электродов. Если размеры внутренних электродов задаются длиной, шириной и толщиной, то индуктивность ESL может быть определена математически. Значение ESL уменьшается, когда электроды конденсатора короче, шире и тоньше.
На рисунке 6 показана связь между номинальной емкостью и резонансной частотой различных типов монолитных керамических конденсаторов. Вы можете видеть, что при уменьшении размеров конденсатора собственная резонансная частота увеличивается, а ESL уменьшается для одинаковых значений емкости. Это означает, что небольшие конденсаторы короткой длины лучше подходят для высокочастотных приложений.
Рисунок 6.
На рисунке 7 показан обратный LW конденсатор с короткой длиной L и большой шириной W. Из частотных характеристик, показанных на рисунке 8, можно увидеть, что LW конденсатор имеет меньший импеданс и лучшие характеристики, чем обычный конденсатор такой же емкости. С помощью LW конденсаторов можно достичь тех же характеристик, как у обычных конденсаторов, но меньшим числом компонентов. Уменьшение числа компонентов, позволяет сократить расходы и уменьшить монтажное пространство.
Рисунок 7. Внешний вид обратного LW конденсатора.
Рисунок 8. |Z| и ESR обратного LW конденсатора и конденсатора общего назначения