Нсх первичного преобразователя что это
Тема: Термометры сопротивления
Опции темы
Отображение
Термометры сопротивления (ТС) – это датчики температуры, принцип действия которых основан на изменении электрического сопротивления от температуры. Как разобраться, какой ТС нужен вам? Сегодня рассмотрим основные характеристики наиболее часто используемых термосопротивлений.
1. НСХ – самая важная характеристика ТС!
НСХ (номинально-статическая характеристика) – это функция или таблица значений, которая определяет зависимость «сопротивление – температура».
По рисунку видно, что диапазон измерения температур зависит от НСХ.
О чем расскажет НСХ? [/COLOR]
• Номинал сопротивления R0 (50 Ом, 100 Ом, 500 Ом, 1000 Ом)
• Материал чувствительного элемента (медь, платина)
• Температурный коэффициент α,
где:
α=0,00428 ⁰С-1 – для 50М/100М
α=0,00391 ⁰С-1 – для 50П/100П
α=0,00385 ⁰С-1 – для Pt100/Pt500/Pt1000
2. Какое сопротивление выбрать: 50 Ом, 100 Ом или 1000 Ом?
Главный принцип действия ТС – это изменение сопротивления от температуры.
Но к сопротивлению чувствительного элемента прибавляется сопротивление линий связи от датчика до прибора. Исходя из этого лучше использовать ТС с бОльшим сопротивлением, чем сопротивление линии связи. Поэтому, 1000 Ом – лучше всего.
НО! Многие приборы не могут работать с таким видом НСХ, поэтому стандартом является 50 Ом и 100 Ом.
Раньше стандартными были 50-омные датчики, так как для их производства расходовалось меньше материала, чем для 100-омных.
3. Что лучше: медь или платина?
От материала чувствительного элемента (ЧЭ) зависит диапазон измерения температур
4. Чем отличаются 100П и Pt100?
Существуют следующие технологии производства чувствительных элементов: намоточная/проволочная и тонкопленочная.
• 100П, применяемые российскими производителями, изготавливаются по проволочной технологии. Данные ТС работают в более широком диапазоне, но при этом сам сенсор достаточно громоздкий.
] • Рt100 имеют тонкопленочные чувствительные элементы. На керамическую подложку напыляется тонкий слой металла, который образует токопроводящую дорожку, так называемый меандр. Эти чувствительные элементы имеют малые габариты, что позволяет использовать их в моделях с малым диаметром. Также технология производства позволяет делать 500- и 1000-омные сенсоры.
5. Что там по точности?
] Класс допуска определяет максимальное допустимое отклонение от номинальной характеристики, причем задается это отклонение как функция температуры – при нуле градусов фиксируется наименьшее допустимое отклонение, а при уменьшении или увеличении температуры диапазон допустимых значений линейно увеличивается.
Существуют 4 класса допуска АА, А, В, С.
На графике представлены:
Класс допуска В – общепромышленное исполнение, и именно он является стандартом в ОВЕН.
Класс допуска А и АА – заказываются для лабораторных измерений.
6. Какой выходной сигнал лучше: сопротивление, ток или цифровой?
Кто-то может сказать, что это вкусовщина, но все сводится к надежности и к стоимости. Надежность рассматривается в разрезе помехоустойчивости:
• Токовый сигнал более помехоустойчив, чем сигнал «сопротивление».
• Цифровой сигнал, например, RS-485, более помехоустойчив, чем токовый.
Что касается стоимости, то самый дешевый – «сопротивление», токовый – средний по цене и «цифра» – дорогой.
При этом если покупать комплект оборудования, то датчики с RS-485 позволяют использовать более дешевые ПЛК, так как нет необходимости в аналоговых входах.
Номинальная характеристика термопреобразователей сопротивления
Сущность метрологии
Метрология, учение о мерах и измерении, существовала с древнейших времён, став практическим инструментом для урегулирования различных споров, ведь в её основе лежал принцип единства и равенства представлений о размерах, формах, свойствах предметов и явлений, порядок их толкования. Корни отечественной метрологии выходят из царизма – во времена Ивана Грозного появились первые диаметрические величины для пушечных ядер. С рождением в императорской России ломоносовской физики и прохождением пути до укрощения электричества в электротехнике, появлением промышленных производств, значимость метрологии стала, пожалуй, уже величиной абсолютной. В Российской Федерации существует государственная система стандартизации (ГСС), объединяющая в себе все основные требования и налаживающая работы по стандартизации и метрологии во всех отечественных организациях. Одна из областей метрологии — термометрия, посвященная, как можно догадаться, температурным замерам и устройствам, с помощью которых проводят такие вычисления: термостатов, термопар и термометров сопротивления.
Понятие номинальной статистической характеристики (НСХ)
НСХ термометра сопротивления (Номинальная статическая характеристика преобразования) – метрологическая величина: номинально предписываемая измерительному средству пропорция величин или сигналов на выходах Y и входах Х измерителя в статичном режиме, выведенная в формулу, график или таблицу. Комплекс мер, применяемых для определения номинальной статистической характеристики, называется поверкой. Для успешного проведения поверки агрегата необходимо соблюсти следующие условия:
а) сверить состояние температуры, влажности соответствуют нормативам, указанным в документации по эксплуатации поверочных средств;
б) исключить в помещении загрязнения коррозивного и искажающего показания приборов характера, элементы термопреобразователей должны быть надёжно защищены;
в) аппаратура, снабжённая зажимом заземления, должна быть заземлена.
В аналоговых приборах статическая характеристика имеет характер непрерывной, в дискретных — релейной. При проектировании измерительных агрегатов номинальную характеристику стремятся отстроить линейной, однако в цифровых преобразователях возможна линеаризация статистической характеристики, температурные коррекции, благодаря использованию интеллектуальных микроэлектронных компонентов.
В аналоговых приборах статическая характеристика имеет характер непрерывной, в дискретных — релейной. При проектировании измерительных агрегатов номинальную характеристику стремятся отстроить линейной, однако в цифровых преобразователях возможна линеаризация статистической характеристики, температурные коррекции, благодаря использованию интеллектуальных микроэлектронных компонентов.
Пример:
Номинальная статическая характеристика термопары железо — константан для диапазона температур от —100 ;о 800 °
ТермоЭДС* мВ, для температуры, С С |
Температура рабочего ’С | -100 | —0 | +о | 100 | 200 | 400 |
0 | 4.63 | 0,00 | 0,00 | 5,27 | 10,78 | 16,33 |
2 | 4,71 | 0,10 | 0,10 | 5,38 | 10,89 | 16,44 |
4 | 4,79 | 0,20 | 0,20 | 5,48 | 11,00 | 16,55 |
10 | 5,03 | 0,50 | 0,50 | 5,81 | 11,34 | 16.88 |
12 | 5,11 | 0,60 | 0,61 | 5,92 | 11,45 | 16,99 |
14 | 5,19 | 0,70 | 0,71 | 6,03 | 11,56 | 17,10 |
16 | 5,27 | 0,80 | 0,81 | 6,14 | 11,67 | 17,21 |
18 | 5,35 | 0,90 | 0,91 | 6,25 | 11,78 | 17,32 |
20 | 5,42 | 1,00 | 1,02 | 6,36 | 11,89 | 17,43 |
22 | 5,50 | 1,09 | 1,12 | 6,47 | 12,00 | 17,54 |
24 | 5,58 | 1,19 | 1,2? | 6,58 | 12,12 | 17,65 |
26 | 5,65 | 1,29 | 1,33 | 6,68 | 12,23 | 17,76 |
28 | 5,72 | 1,39 | 1,43 | 6,79 | 12,34 | 17,87 |
30 | 5,80 | 1,48 | 1,54 | 6,90 | 12,45 | 17,98 |
32 | 5,87 | 1,58 | 1,64 | 7,01 | 12,56 | 18,09 |
34 | 5,94 | 1 67 | 1,74 | 7,12 | 12,67 | 18,20 |
36 | 6,0! | 1,77 | 1,85 | 7,23 | 12,78 | 18,32 |
38 | 6,08 | 1,87 | 1,95 | 7,34 | 12,89 | 18.43 |
40 | 6,16 | 1,96 | 2,06 | 7,45 | 13,01 | 18,54 |
42 | 6,22 | 2,06 | 2,16 | 7,56 | 13,12 | 18,65 |
44 | 6,29 | 2,15 | 2,27 | 7.67 | 13,23 | 18,76 |
46 | 6,36 | 2,24 | 2,37 | 7,78 | 13,34 | 18,87 |
48 | 6,43 | 2,34 | 2,48 | 7,89 | 13,45 | 18,98 |
50 | 6,50 | 2,43 | 2,58 | 8,00 | 13,56 | 19,09 |
52 | 6,56 | 2,52 | 2,69 | 8,12 | 13,67 | 19,20 |
54 | 6,63 | 2,62 | 2,80 | 8,23 | 13,78 | 19,31 |
56 | 6,69 | 2,7! | 2,90 | 8,34 | 13,89 | 19,42 |
58 | 6,76 | 2,80 | 3,01 | 8,45 | 14,00 | 19.53 |
60 | 6,82 | 2,89 | 3,11 | 8,56 | 14,12 | 19,64 |
Дешифровка кодификаторов
Медные датчики, как правило, производятся с градуировочными величинами 50М и 100М. Отечественному промышленнику медные датчики полюбились своей дешевизной и практичностью. Платиновые датчики, более строгие и отличающиеся высокой ценой, в общей массе предполагают градуировочные величины в 50П, 100П, Pt100, Pt500, Pt1000.
Существуют, впрочем, отличные от общепринятых вариации градуировки, но встретиться с ними представляется возможным в весьма редких случаях.
Приведенные сокращения расшифровываются так:
то есть кодификатором предусматривается указание на благородный металл чувствительного элемента и его сопротивление при температурном показателе в 0 градусов Цельсия.
номинальная статическая характеристика
3.11 номинальная статическая характеристика; НСХ: Зависимость сопротивления термопреобразователя сопротивления или чувствительного элемента от температуры, рассчитанная по формулам, приведенным в разделе 5, для термопреобразователя сопротивления или чувствительного элемента с конкретным значением R0.
Смотри также родственные термины:
3.11 номинальная статическая характеристика ; НСХ : Зависимость сопротивления ТС или ЧЭ от температуры, рассчитанная по формулам, приведенным в разделе 5 для ТС или ЧЭ с конкретным значением R0.
35. Номинальная статическая характеристика преобразования средства измерений
Зависимость информативного параметра выходного сигнала средства измерений от информативного параметра входного сигнала при номинальных неинформативных параметрах входного сигнала
Полезное
Смотреть что такое «номинальная статическая характеристика» в других словарях:
номинальная статическая характеристика преобразования средства измерений — Зависимость информативного параметра выходного сигнала средства измерений от информативного параметра входного сигнала при номинальных неинформативных параметрах входного сигнала. [ГОСТ 24453 80] Тематики измерение лазерного излучения … Справочник технического переводчика
номинальная статическая характеристика ; НСХ — 3.11 номинальная статическая характеристика ; НСХ : Зависимость сопротивления ТС или ЧЭ от температуры, рассчитанная по формулам, приведенным в разделе 5 для ТС или ЧЭ с конкретным значением R0. Примечание Условное обозначение НСХ состоит из… … Словарь-справочник терминов нормативно-технической документации
Номинальная статическая характеристика преобразования средства измерений — 35. Номинальная статическая характеристика преобразования средства измерений Зависимость информативного параметра выходного сигнала средства измерений от информативного параметра входного сигнала при номинальных неинформативных параметрах… … Словарь-справочник терминов нормативно-технической документации
статическая характеристика — 3.14 статическая характеристика: Зависимость активного (при движении вверх) и пассивного (при движении вниз) нажатий полоза токоприемника на контактный провод от рабочей высоты. Источник: ГОСТ Р 54334 2011: Токоприемники железнодорожного… … Словарь-справочник терминов нормативно-технической документации
статическая характеристика регулятора — 3.40 статическая характеристика регулятора : График зависимости частоты вращения агрегата от величины хода сервомотора НА в установившемся состоянии при неизменном сигнале. Источник: СТО 17330282.27.140.005 2008: Гидротурбинные установки. Ор … Словарь-справочник терминов нормативно-технической документации
статическая — 3.7 статическая нагрузка: Внешнее воздействие, которое не вызывает ускорений деформируемых масс и сил инерции. Источник … Словарь-справочник терминов нормативно-технической документации
характеристика — 3.1 характеристика (characteristic): Качественное или количественное свойство элемента. Примечание Примеры характеристик давление, температура, напряжение. Источник: ГОСТ Р 51901.11 2005: Менеджмент риска. Исследование опасности и… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 10511-83: Системы автоматического регулирования частоты вращения (САРЧ) судовых, тепловозных и промышленных дизелей. Общие технические требования — Терминология ГОСТ 10511 83: Системы автоматического регулирования частоты вращения (САРЧ) судовых, тепловозных и промышленных дизелей. Общие технические требования оригинал документа: Время разгона дизеля Т, с Время, необходимое для разгона… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 24453-80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин — Терминология ГОСТ 24453 80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин оригинал документа: 121. Абсолютная спектральная характеристика чувствительности средства измерений… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 8.625-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний — Терминология ГОСТ Р 8.625 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции : Время … Словарь-справочник терминов нормативно-технической документации
Термосопротивления: Теория
Недавно мне повезло побывать на производстве датчиков температуры, а точнее на швейцарском предприятии IST-AG, где делают платиновые и никелевые термосопротивления (RTD).
По этому поводу публикую две статьи, в которых читатель найдет довольно подробное описание этого типа датчиков, путеводитель по основным этапам производственного процесса и обзор возможностей, которые появляются при использовании тонкопленочных технологий.
В первой статье разбираемся с теоретической базой. Не слишком увлекательно, но весьма полезно.
Что такое термометры сопротивления
(они же — термосопротивления или RTD)
Сначала имеет смысл разобраться с терминологией. Если вы хорошо знакомы с вопросом, то смело переходите ко второй части статьи. А может быть и сразу к третьей.
Итак, под определение «датчик температуры» попадают тысячи самых разных изделий. Под датчиком можно понимать и готовое измерительное устройство, где на дисплее отображается значение температуры в градусах, и интегральную микросхему с цифровым сигналом на выходе, и просто чувствительный элемент, на базе которого строятся все остальные решения. Сегодня мы говорим только о чувствительных элементах, которые, впрочем, тоже будем называть словом «датчик».
Термометры сопротивления, которые также известны как термосопротивления и RTD (Resistance Temperature Detector) — это чувствительные элементы, принцип работы которого хорошо понятен из названия — электрическое сопротивление элемента растет с увеличением температуры окружающей среды и наоборот. Вероятно вы слышали о термосопротивлениях как о платиновых датчиках температуры типа Pt100, Pt500 и Pt1000 или как о датчиках 50М, 50П, 100М или 100П.
Иногда термосопротивления путают с термисторами или термопарами. Все эти датчики используются в похожих задачах, но, даже несмотря на то что термисторы тоже являются преобразователями температура-сопротивление, нельзя путать термосопротивления, термисторы и термопары между собой. О разнице в строении и назначении этих элементов написана уже тысяча статьей, так что я, пожалуй, не буду повторяться.
Отмечу главное: средний термометр сопротивления стоит в разы дороже, чем средний термистор и термопара, но только термосопротивления имеют линейную выходную характеристику. Линейность характеристики, а также гораздо более высокие показатели по точности и повторяемости результатов измерений, делают термосопротивления востребованными несмотря на разницу в цене.
Основные характеристики термосопротивлений
Если коротко, характеристики термосопротивлений можно разбить на три группы:
Номинальная статическая характеристика (НСХ)
НСХ — это функция (на практике чаще таблица значений), которая определяет зависимость сопротивление-температура.
Зависимость R(T), конечно, не является абсолютно линейной — на самом деле выходная характеристика термосопротивления описывается полиномом с известными коэффициентами. В простейшем случае это полином второй степени R(T) = R0 (1 + A x T + B x T 2 ), где R0 — номинальное сопротивление датчика, то есть значение сопротивления при 0°C.
Вид полинома и его коэффициенты описываются в различных национальных и международных стандартах. Действующий российский стандарт — ГОСТ 6651-2009. В Европе чаще используют DIN 60751 (он же IEC-751), однако одновременно с ним действует DIN 43760, в Северной Америке популярен стандарт ASTM E1137 и так далее. Несмотря на то что некоторые стандарты согласованы между собой, в целом картина довольно печальная и единого индустриального стандарта по факту не существует.
Наиболее популярные типы термосопротивлений — это платиновые датчики (Pt 3850, Pt 3750, Pt 3911 и др.), никелевые (Ni 6180, Ni 6720 и др.) и медные термосопротивления, например Cu 4280. Каждому типу датчиков соответствует свой полином R(T).
Приведенные наименования содержат название металла, который используется при изготовлении датчика, и коэффициент, который описывает отношение сопротивления датчика при 0 к сопротивлению при 100°C. Этот коэффициент, вместе со значением R0, определяет наклон функции R(T).
Используемый металл однозначно определяет степень полинома R(T), а коэффициенты полинома определяются температурным коэффициентом металла.
Например, для всех платиновых датчиков функция R(T) имеет следующий вид:
Та же логика действует для меди и никеля. Например, НСХ всех никелевых датчиков описывается полиномом шестой степени:
R(T) = R0 (1 + A x T + B x T 2 + C x T 3 + D x T 4 + E x T 5 + F x T 6 )
где коэффициенты определяются температурным коэффициентом никеля (Ni 6180 ppm/K, Ni 6720 ppm/K и т.д.).
Осталось сказать о последнем параметре НСХ термометров сопротивления — о номинальном сопротивлении R0. Чаще всего используются датчики со стандартным R0 — 50, 100, 500 или 1000 Ом, однако иногда требуются тремосопротивления с R0 = 2000 и даже 10000 Ом, а также датчики с «не кратным» номинальным сопротивлением.
То есть каждому типу термосопротивления может соответствовать несколько НСХ с разными номинальными сопротивлениями R0. Для наиболее распространенных в РФ характеристик используют стандартные обозначения: Pt100 и Pt1000 соответствуют платине с температурным коэффициентом 3850 ppm/K и R0 = 100 и 1000 Ом соответственно. Унаследованные из советских справочников обозначения 50П и 100П — это датчики из платины с коэффициентом 3911 ppm/K и R0 = 50 и 100 Ом, а датчики известные как 50М и 100М — это медь 4280 ppm/K с номинальным сопротивлением 50 и 100 Ом.
Точность датчика
Точность термосопротивления — это то, насколько зависимость R(T) реального датчика может отклониться от идеальной НСХ. Для обозначения точности термосопротивлений используют понятие класса допуска (от же класс точности).
Класс допуска определяет максимальное допустимое отклонение от номинальной характеристики, причем задается это отклонение как функция температуры — при нуле градусов фиксируется наименьшее допустимое отклонение, а при уменьшении или увеличении температуры диапазон допустимых значений линейно увеличивается.
Когда дело касается классов допуска, бардак в действующих стандартах только усугубляется — даже названия классов в разных источниках могут отличаться.
Другие названия | Допуск, °С | |
Класс АA | Class Y 1/3 DIN 1/3 B F 0.1 (если речь о тонкопленочном датчике) W 0.1 (если речь о намоточном датчике) | ±(0.1 + 0.0017 |T|) |
Класс A | 1/2 DIN 1/2 B F 0.15 (если речь о тонкопленочном датчике) W 0.15 (если речь о намоточном датчике) | ±(0.15 + 0.002 |T|) |
Класс B | DIN F 0.3 (если речь о тонкопленочном датчике) W 0.3 (если речь о намоточном датчике) | ±(0.3 + 0.005 |T|) |
Класс C | Class 2B Class BB F 0.6 (если речь о тонкопленочном датчике) W 0.6 (если речь о намоточном датчике) | ±(0.6 + 0.01 |T|) |
— | Class K 1/10 DIN | ±(0.03 + 0.0005 |T|) |
— | Class K 1/5 DIN | ±(0.06 + 0.001 |T|) |
Приведенные в таблице допуски соответствуют большинству действующих стандартов для платиновых датчиков 3850 ppm/K, включая ГОСТ и европейский DIN 60751 (IEC-751), который с большой натяжкой можно назвать общепринятым.
Например, в американском стандарте ASTM E1137 классы допуска платиновых датчиков именуются Grade и определяются иначе:
Grade A | ±(0.25 + 0.0042 |T|) |
Grade B | ±(0.13 + 0.0017 |T|) |
Если же говорить о платине с другими температурными коэффициентами или о никелевых и медных датчиках, то можно обнаружить и другие определения допусков.
Класс допуска описывает не только максимальную величину допуска, но и диапазон температур, на котором этот допуск гарантируется. Вы, наверное, уже догадались, что в разных стандартах эти диапазоны могут существенно отличаться. Это действительно так, причем диапазон температур зависит не только от класса допуска и типа датчика, но и от технологии, по которой выполнен датчик — у намоточных датчиков диапазон всегда шире.
О том, что такое намоточные и тонкопленочные датчики — чуть ниже.
На картинке — кассы допуска для платиновых датчиков с температурным коэффициентом 3850 по стандарту DIN 60751 (IEC-751).
Тонкопленочный датчик Pt 3850 ppm/K | Намоточный датчик Pt 3850 ppm/K | ||||
Класс допуска | Диапазон температур | Класс допуска | Диапазон температур | ||
DIN 60751 (IEC-751) / ГОСТ | DIN 60751 (IEC-751) | ГОСТ | |||
Класс АА (F 0.1) | 0… +150°С | Класс АА (W 0.1) | -100… +350°С | -50… +250°С | |
Класс А (F 0.15) | -30… +300°С | Класс А (W 0.15) | -100… +450°С | ||
Класс B (F 0.3) | -50… +500°С | Класс B (W 0.3) | -196… +600°С | -196… +660°С | |
Класс С (F 0.6) | -50… +600°С | Класс С (W 0.6) | -196… +600°С | -196… +660°С |
Я привожу все эти подробности о терминологии и разночтениях в стандартах чтобы донести одну простую мысль: выбирая термосопротивление легко запутаться и неверно истолковать характеристики элемента. Важно понимать какие именно требования вы предъявляете к элементу (в абсолютных цифрах, а не в классах) и сравнивать их с абсолютными цифрами из документации на конкретный датчик.
Структура термометров сопротивления
Итак, термосопротивления представляют собой резисторы, выполненные из платины или, реже, из никеля или меди. Выше уже упоминались две технологии — намоточная (проволочная) и тонкопленочная.
Намоточные датчики — это термосопротивления, выполненные на основе спиралей из металлической проволоки. Существует два основных способа изготовления намоточных датчиков. В первом случае проволока наматывается на стеклянный или керамический цилиндр, после чего конструкция покрывается изолирующим слоем из стекла. Второй способ — это помещение металлических спиралей в каналы внутри керамического цилиндра.
При изготовлении тонкопленочных датчиков на керамическую подложку напыляется тонкий слой металла, который образует токопроводящую дорожку, так называемый меандр. После этого датчик покрывается изолирующим слоем из стекла.
Большинство современных термосопротивлений выполняется по одной из этих трёх технологий. В источниках встречаются противоречивые мнения о том, какая конструкция более устойчива к вибрациям или перепадам температур. Оценки стоимости датчиков разных конструкций тоже сильно разнятся.
На деле принципиальных отличий между характеристиками датчиков разной конструкции нет, цены на тонкопленочные и намоточные датчики также находятся в одном диапазоне.
В большинстве случаев совершенно не важно как именно устроен датчик — при выборе компонента имеет значение только соотношение цены и характеристик конкретного элемента (нужно только не забывать что классы допуска для тонкопленочных датчиков определены на более узком диапазоне температур). Однако в некоторых задачах тонкопленочные датчики осознанно предпочитают намоточным. На это есть три главных причины:
Заключение
В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.
upd #1: Статья «Термосопротивления: производственный процесс» опубликована.