какая деформация тела называется пластической
изучаем сопротивление материалов
Деформация
Перемещение — изменение положения точки тела в пространстве вследствие изменения его формы и размеров под действием нагрузки. Полное перемещение точки в пространстве раскладывается на компоненты u, v и w, параллельные осям x, y и z, соответственно.
Деформация — изменение формы и размеров тела.
Перемещения рассматриваемой точки зависит от деформации всех нагруженных областей тела и включают также в себя перемещения как жесткого целого ненагруженных областей. Поэтому перемещения не могут характеризовать степень деформирования в окрестности рассматриваемой точки. Для этого используют понятие деформации. В отдельных случаях их величины могут совпадать (растяжение стержня), но в общем случае — это разные вещи.
Остановимся еще на одном важном моменте. Очень часто путают два понятия — «деформация» и «перемещение» — хотя ясно, что они не адекватны. Например, представим себе канат, прикрепленный к потолку. По канату на некоторую высоту поднялся человек. Очевидно, что под действием веса человека (пренебрегая весом каната) деформируется (растягивается) только верхняя часть каната, заключенная между потолком и местом, где находится человек. Нижняя часть каната не деформируется, а перемещается как твердое тело. Следовательно, не всегда перемещения сечений какого-то участка стержня непосредственно связаны с его деформацией.
Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. 3-е изд. — М.: Высшая школа, 2003.
Деформации могут быть угловые и линейные.
Линейная деформация характеризует изменение размеров тела. Различают абсолютную деформацию ΔL и относительную деформацию ε = ΔL/L.
Угловая деформация характеризует изменение формы тела и чаще всего называется углом сдвига.
Полная деформация — это сумма линейной и угловой деформации.
Если взять малый элемент тела параллелепипед, ориентированный по осям x, y, z, то соответственно возникает три линейных деформации (вдоль осей x, y, z ) εx,εy, εz
$$\epsilon _x = <Δdx\over dx>, \quad \epsilon _y = <Δdy\over dy>,\quad \epsilon _z = <Δdz\over dz>$$
и три угловые деформации [math]\gamma _
Относительные линейные и угловые деформации – величины безразмерные.
Деформации упругие и пластические
Деформации делятся на упругие и пластические (остаточные).
Типы деформаций
В зависимости от приложенных к телу нагрузок различают несколько видов деформации, отличающиеся законом распределения напряжений по сечению тела.
Растяжение-сжатие в поперечном сечении действует только одно внутреннее усилие, не равное нулю — продольное усилие. Конструкция В этом случае говорят о линейной деформации конструкции (характеризуется абсолютным и относительным удлинением, остальными деформациями пренебрегают). Чистый сдвиг в поперечном сечении действует только поперечная сила. В этом случае линейные относительные деформации равны нулю, углы сдвига не равны нулю (характеризуется изменением формы) Кручение в поперечном сечении действует только крутящий момент. Линейные относительные деформации равны нулю, углы сдвига не равны нулю. Изгиб в поперечном сечении действуют изгибающий момент и поперечная сила. Сложное сопротивление одновременное действие нескольких типов простых деформаций — растяжения-сжатия, кручения, изгиба.
Для каждого из указанных видов деформации существуют свои формулы для расчета на прочность.
Учебные материалы
Деформацией называется изменение формы и размеров тела под действием приложенных сил.
Внешние и внутренние силы приводят к возникновению в сечении тела напряжений.
Напряжением называется сила, приходящаяся на единицу площади сечения тела.
Под действием осевых растягивающих сил Р (рисунке 13) в плоскости m-n действуют нормальные растягивающие напряжения:
В произвольно выбранной плоскости mi-ni площадь сечения Fa=F/Сos a, действующая сила в этом сечении Рa=Р × Cos a, нормальные напряжения
σ a = Pa / Fa = σ × Cos 2 a, касательные напряжения τ a=1/2 × σ × Sin 2 a.
Касательные напряжения τ a, обращаясь в нуль в продольных и поперечных сечениях, имеют наибольшее значение на площадях, наклоненных под углом 45 0 к оси растянутого стержня: τ max = σ /2.
Рисунок 13 — Схема образования растягивающих нормальных ( σ ) и касательных ( τ ) напряжений
Деформация металла под действием напряжений может быть упругой и пластической.
Упругой называется деформация, полностью исчезающая после прекращения действия вызвавших ее напряжений.
Она не вызывает заметных остаточных изменений в структуре и свойствах металла, происходит незначительное по величине и обратимое изменение расстояний между атомами в кристаллической решетке металла (рисунке 14). С увеличением межатомных расстояний значительно возрастают силы взаимного притяжения атомов. При снятии напряжений под действием сил притяжения атомы возвращаются в исходное положение и упругая деформация исчезнет. Нормальные напряжения могут вызвать только упругую деформацию.
Если нормальные напряжения достигают величины сил межатомной связи, то произойдет хрупкое разрушение путем отрыва.
Пластической, или остаточной, называется деформация, остающаяся после прекращения действия сил, вызвавших ее.
В кристаллической решетке металла (рисунок 15) происходит необратимое перемещение атомов. После снятия напряжений в теле наблюдается остаточное изменение формы и размеров, причем сплошность тела не нарушается.
Необратимое смещение атомов на параметр решетки происходит под действием касательных напряжений. В кристаллической решетке сдвиг (скольжение) происходит по плоскостям и в направлениях с наиболее плотной упаковкой атомов. Эти плоскости называются плоскостями сдвига, или скольжения. Чем больше элементов сдвига в решетке, тем выше пластичность металла. Наиболее легкий сдвиг по этим плоскостям и направлениям объясняется тем, что при этом величина перемещения атомов из одного устойчивого равновесного положения в узле решетки в другое такое же положение будет минимальной, а следовательно, необходимое касательное напряжение — наименьшим. В результате развития пластической деформации происходит разрушение путем среза.
Для одновременного перемещения атомов в плоскости сдвига требуется очень большое напряжение, которое в сотни и тысячи раз превышает реальное сопротивление сдвигу (таблица 1).
Таблица 1 — Теоретическое и реальное сопротивление сдвигу для пластической деформации некоторых металлов
Металл | Сопротивление сдвигу, МПа | |
теоретическое | реальное | |
Железо Алюминий Медь | 2300 1900 1540 | 29 1,2…2,4 1,0 |
Расхождения между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено дислокационным механизмом пластической деформации. Для перемещения дислокаций (рисунок 16) требуется лишь незначительное перемещение атомов, и пластическая деформация совершается при небольшой величине касательных напряжений, что и соответствует экспериментальным данным.
При выходе дислокации на поверхность металла она перестает существовать, но процесс пластической деформации сопровождается не только движением дислокаций, но и их зарождением. Источниками новых дислокаций могут быть вакансии, дислоцированные атомы, границы блоков и зерен, сами дислокации, не способные перемещаться.
Пластическая деформация поликристалла принципиально идет по тому же механизму, что и рассмотренного выше монокристалла, но имеет некоторую особенность. В поликристаллическом металле зерна, а следовательно, и плоскости легкого скольжения имеют разную ориентировку.
Вследствие влияния соседних зерен деформирование каждого зерна не может совершаться свободно и начнется, когда напряжения превысят предел упругости. Сначала пластическая деформация может происходить лишь в отдельных зернах, у которых плоскости легкого скольжения совпадают с направлением максимальных касательных напряжений (под углом 450 к направлению приложенных сил). Кроме сдвига происходит и поворот частей зерна. При повороте плоскостей сдвиг облегчается. Смещение и поворот зерна приводит к повороту других зерен, в которых начинается процесс пластической деформации (рисунок 17).
В результате сдвигов и поворота плоскостей скольжения зерно (рис. 18, а) постепенно вытягивается в направлении растягивающих сил и образуется характерная ориентированная волнистая структура (рисунок 18, б), которая называется текстурой. В этом состоянии металл имеет резко выраженную анизотропию свойств, т.е. неоднородность свойств вдоль и поперек волокон. Так, вдоль волокон металл прочнее, чем в поперечном направлении.
Рисунок 17 — Схема возможных направлений плоскостей сдвига в зернах металла а — до деформации; б — после формации
Деформация
Из Википедии — свободной энциклопедии
Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга за счет приложения усилия, при котором тело искажает свои формы. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Виды деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Обратимые деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе обратимых деформаций лежит смещение атомов тела от положения равновесия, в основе необратимых — необратимые перемещения атомов на расстояния от исходных положений равновесия (после снятия нагрузки происходит переориентация в новое равновесное положение). Деформация определяется как отношение изменения длины деформированного объекта к его начальной длине. Деформация не имеет физической размерности. Виды деформации: сдвиг, сжатие, смятие, изгиб, кручение, срез
Пластическая деформация
Деформа́ция (от лат. deformatio — искажение) — изменение относительного положения частиц тела, связанное с их перемещением. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое напряжение.
Способность веществ пластически деформироваться называется пластичностью. При пластическом деформировании металла одновременно с изменением формы меняется ряд свойств, в частности, при холодном деформировании повышается прочность.
Содержание
Виды деформации
Наиболее простые виды деформации тела в целом:
В большинстве случаев наблюдаемая деформация представляет собой несколько деформаций одновременно. В конечном счёте, однако, любую деформацию можно свести к 2 наиболее простым:
Изучение деформации
Деформация тела вполне определяется, если известен вектор перемещения каждой его точки. Деформация твёрдых тел в связи со структурными особенностями последних изучается физикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах — теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформации заменяется изучением мгновенного распределения скоростей.
Причины возникновения деформации твёрдых тел
Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикционный эффект), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.
Упругая и пластическая деформация
Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случае полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела.
Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной приложенной к телу нагрузке деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и последействие упругое. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.
Сплошность
В теории упругости и пластичности тела рассматриваются как «сплошные». Сплошность, то есть способность заполнять весь объём, занимаемый материалом тела без всяких пустот является одним из основных свойств, приписываемых реальным телам. Понятие сплошности относится также к элементарным объёмам, на которые можно мысленно разбить тело. Изменение расстояния между центрами каждых двух смежных бесконечно малых объёмов у тела, не испытывающего разрывов, должно быть малым по сравнению с исходной величиной этого расстояния.
Простейшая элементарная деформация
Простейшей элементарной деформацией является относительное удлинение некоторого элемента:
На практике чаще встречаются малые деформации, так что e Измерение деформации
Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие деформации весьма малы, и измерение их требует высокой точности. Наиболее распространённый метод исследования деформации — с помощью тензометров. Кроме того, широко применяются тензодатчики сопротивления, поляризационно-оптический метод исследования напряжения, рентгеновский структурный анализ. Для суждения о местных пластических деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком и т. д.
Примечания
Литература
Полезное
Смотреть что такое «Пластическая деформация» в других словарях:
пластическая деформация — ▲ деформация ↑ необратимый пластическая деформация деформация, не исчезающая после снятия нагрузки. остаточная деформация. пластичность. ползучесть. ↓ стружка. пластическое разрушение … Идеографический словарь русского языка
ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ — (см. ДЕФОРМАЦИЯ МЕХАНИЧЕСКАЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ — необратимое изменение формы матери ала под действием внешних и внутренних сил, иначе (см.) … Большая политехническая энциклопедия
пластическая деформация — Возникающая под влиянием внеш. нагружения и не исчезающая после его снятия. Для решения подавл. большинства технологии, задач пластин, формоизменения используют усредн. показатели движения больших групп атомов и строят расчетный аппарат на… … Справочник технического переводчика
ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ — остаточная деформация без макроскопических нарушений сплошности материала, образовавшаяся в результате воздействия силовых факторов. Пластическая деформация лежит в основе изготовления форм и стержней. * * * Пластическая деформация – остаточная… … Металлургический словарь
Пластическая деформация — остаточная деформация без макроскопических нарушений сплошности материала, образовавшаяся в результатате воздействия силовых факторов. Пластическая деформация лежит в основе изготовления форм и стержней … Энциклопедический словарь по металлургии
Пластическая деформация — Plastic deformation Пластическая деформация. Постоянное (неупругое) искажение материалов под воздействием приложенных давлений, которые деформируют материал выше его Elastic limit Предела упругости. (Источник: «Металлы и сплавы. Справочник.» Под… … Словарь металлургических терминов
пластическая деформация — plastinė deformacija statusas T sritis chemija apibrėžtis Deformacija, kurios metu negrįžtamai pakinta kūno pavidalas ir matmenys. atitikmenys: angl. plastic deformation rus. пластическая деформация … Chemijos terminų aiškinamasis žodynas
пластическая деформация — netamprioji deformacija statusas T sritis fizika atitikmenys: angl. plastic deformation vok. plastische Deformation, f; plastische Verformung, f rus. пластическая деформация, f pranc. déformation plastique, f … Fizikos terminų žodynas
Пластическая деформация — Деформация, которая не исчезает после того, как снята нагрузка … Большая советская энциклопедия
Пластическая деформация материалов
Пластическая деформация – эффективный инструмент формирования структуры различных материалов. На ее особенностях основаны технологии обработки давлением, придание материалам особых свойств, создание наноматериалов.
Понятие деформации
Под термином «деформация» понимаются любые изменения структуры, формы, размеров тел. Она происходит под влиянием напряжений — сил, которые действуют на единицу площади сечения заготовок или деталей. Деформация металла обусловлена:
Примеры прилагаемых к телу нагрузок:
Механизм и виды деформирования изучаются материаловедением, физикой твердого тела, кристаллографией.
Твердые тела подвержены двум видам деформации:
В таблице приведены сравнительные характеристики этих явлений.
Критерий сравнения | Виды | |
Упругая | Пластическая (остаточная, необратимая) | |
Поведение атомов кристаллической решетки под нагрузками | · сдвигаются на промежутки меньшие, чем межатомное расстояние; · блоки кристалла поворачиваются незначительно | · перемещаются на расстояния, большие межатомных; · в структуре возникают остаточные изменения; · нет макроскопических нарушений сплошности металла |
Деформирование формы и структуры после прекращения нагрузки | устраняется полностью | не устраняется |
Вызывается действием напряжений | · нормальных; · невысоких касательных | больших касательных |
Показатели сопротивления | модуль упругости | теоретическая прочность |
Результат развития | необратимость наступает, когда напряжения достигают предела упругости; упругая переходит в пластическую. | возможность вязкого разрушения путем сдвига. |
Пластическое деформирование ведет к модификациям в структурах металлов и их сплавов, а, следовательно, к изменениям их свойств.
Механизм возникновения
Возникновение пластической деформации обусловлено процессами, имеющими кристаллографическую природу: скольжением; двойникованием; межзеренным перемещением.
Скольжение
Происходит под воздействием касательных напряжений. Проявляется в виде перемещения одной части кристалла относительно другой. Этот процесс, в пределах кристалла, называется линейной дислокацией. Когда линейная дислокация выходит из кристалла, на его поверхности возникает ступенька, равная одному периоду решетки. Увеличение напряжения ведет к перемещению новых атомных плоскостей. Образуются новые ступеньки единичных сдвигов на поверхности кристалла. Чтобы дислокация продвинулась, не требуется разрывать все атомные связи в плоскости скольжения. Межатомная связь разрывается только в краевой зоне дислокации.
Современная теория основана на положениях:
Одно из свойств металла – теоретическая прочность. Ее используют для характеристики сопротивления пластическому деформированию. Она определяется силами межатомных связей в кристаллических решетках и значительно превышает реальную. Так для железа прочность:
Различие вызвано тем, что для движения дислокации разрушаются лишь связи между атомами, находящимися у края дислокации, а не все атомные связи. Для этого необходимы меньшие усилия.
Двойникование
Это процесс образования в кристалле областей с закономерно измененной ориентацией кристаллической структуры. Двойникованием достигается незначительная степень деформации.
Двойниковые образования возникают по одному из двух механизмов:
Двойникование свойственно кристаллам, имеющим решетки:
Склонность к нему повышается при увеличении скорости деформации и снижении температуры.
Двойникование в металлах с кубической гранецентрированной решеткой (алюминий, медь) — результат отжига заготовки, которая подверглась пластическому деформированию.
Межзеренное перемещение
Такое изменение структуры материала идет вод воздействием растягивающего усилия. Процесс, в первую очередь, начинается в зерне, в котором направление легкого скольжения совпадает с направлением действия нагрузки. Это зерно будет растягиваться. Соседние зерна при этом будут разворачиваться до того момента, когда в них направление легкого скольжения также совместится с направлением силы. После они начнут деформироваться.
Результат межзеренного перемещения – волокнистая структура материала. Его механические свойства неодинаковы в разных направлениях:
Эта разница свойств называется анизотропия
Виды пластической деформации
В зависимости от температуры и скорости процесса различают такие виды пластической деформации:
Одно из определяющих понятий — температура рекристаллизации. Она соответствует наименьшей температуре нагрева, при которой возможно возникновение новых зерен и определяется температурой плавления металла по формуле:
Холодная деформация. Наклеп
Холодная деформация проходит при температурах, ниже tрек. В ее результате возникает искажение кристаллической структуры материала. Все зерна растягиваются в одном направлении. Растет прочность, а свойства пластичности снижаются. Это упрочнение называется наклеп (нагортовка). Он может быть:
Причина наклепа заключается в развороте плоскостей скольжения и усилении искажений кристаллической решетки. Упрочненный, наклепанный металл быстро вступает в химические реакции, хорошо корродирует и склонен к коррозионному растрескиванию. Деформировать его затруднительно. Но наклеп повышает свойство сопротивления усталости.
В прокатном производстве этот тип деформации применяется для обработки давлением пластичных металлов, заготовок с малым сечением. Такие методы, как штамповка и волочение, позволяют достичь требуемой чистоты поверхности и обеспечить точность размеров.
Устранить изменения в структуре, которые появляются при холодной деформации, возможно термообработкой (отжигом).
При отжиге подвижность атомов повышается. В металле из множественных центров вырастают новые зерна, которые заменяют вытянутые, деформированные. Они характеризуются одинаковыми размерами во всех направлениях. Это эффект называется рекристаллизацией.
Горячая деформация
Горячая деформация имеет такие характерные признаки:
Благодаря этим обстоятельствам, технологии горячей деформации применяются при обработке давлением крупных заготовок, малопластичных и сложно деформируемых материалов, литых заготовок. При этом используется оборудование меньшей мощности, чем для холодной деформации.
Недостаток процесса — возникновение окалины на поверхности заготовок. Это снижает показатели качества и возможность обеспечения требуемых размеров.
Процессы, после которых структура образцов рекристаллизована частично с признаками упрочнения, называются неполной горячей деформацией. Она является причиной неоднородности структуры металла, пониженных механических и пластических характеристик. Регулированием соответствия скорости деформирующего воздействия и рекристаллизации, можно достичь условий, при которых рекристаллизация распространится во всем объеме обрабатываемой заготовки.
Рекристаллизация начинается после окончания деформирования. При значительных температурах описанные явления происходят за секунды.
Таким образом, особенности воздействия холодной деформации используются для улучшения рабочих характеристик изделий. Сочетанием горячей и холодной деформаций, режимов термообработки можно воздействовать на изменение этих свойств в требуемых пределах.
Интенсивная пластическая деформация
Получить беспористые объемные металлические наноматериалы можно технологиями интенсивной пластической деформации (ИПД). Их суть заключается в деформировании металлических заготовок:
Это обеспечивает формирование гомогенной наноструктуры с большеугловыми границами зерен. Вопреки интенсивному воздействию, образцы не должны получать механические повреждения и разрушаться.
Первые работы по созданию наноматериалов выполнены в 80х-90х годах ХХ века с использованием методов кручения и разноканального прессования. Первый метод применим для небольших образцов – получаются пластинки диаметром 10…20 мм и толщиной до 0,5 мм. Для того чтобы получить массивные наноконструкции используется второй метод, в основу которого положена деформация сдвигом.
Методы пластической деформации позволяют получать заготовки из стали, сплавов цветных металлов и других материалов (резина, керамика, пластмассы).
Они высокопроизводительные, позволяют обеспечить требуемое качество получаемых изделий, улучшить их механические свойства.