какая доля солнечной энергии усваивается растениями наземных экосистем при фотосинтезе
Сколько солнечной энергии используют растения при фотосинтезе?
Считается, что на фотосинтез растения используют от 1 до 5% падающего светового излучения (за висит от типа фотосинтеза в данном виде растений в данных условиях). Это та энергия которая усваивается в виде углеводов в растении.
Но при этом не учитывается, что кроме этого около 50% солнечного света идет непосредственно на нагревание планеты и воздуха до тех температур при которых происходит фотосинтез (фотосинтетически активные температуры для большинства растений +10 град. по С). Эту энергию тоже следует учитывать, наверное. Еще часть энергии солнца (до 30% кажется) тратится на испарение воды, в том числе и из устьиц растений (транспирация), что также обеспечивает процессы фотосинтеза.
Сам процесс фотосинтеза заключается в преобразовании солнечной энергии в энергию химических связей у растений. Побочным явлением при фотосинтезе является выделение растениями кислорода. Фотосинтез происходит в хлоропластах. На него приходится в среднем около 2-2,5% всей энергии солнечных лучей. Разброс обусловлен различной способностью к фотосинтезу у разных растений.
Фотосинтез возможен только у тех растений, в хлоропластах которых содержится зелёный пигмент. Он обеспечивает выделение кислорода, органических веществ и поглощение углекислого газа. Необходимым условием также является наличие воды.
Ну не совсем «чёрный ящик». В целом он исследован неплохо. Более того, даже воспроизведены отдельные его стадии в лабораторных условиях. Но вот только провести фотосинтез управляемо, искусственно «от и до» пока не удаётся. Дело в том, что это уж очень сложный, заковыристый, процесс. Воссоздать его не только один в один, но и за счёт имитации тех же стадий при помощи специально подобранных катализаторов пока не получается.
Учитывая же то, как в современных странах относятся к науке, как урезают финансирование, и как резко упала её эффективность в последний период, рассчитывать на скорое достижение успеха не приходится.
В результате всех реакций, при фотосинтезе в растениях, образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Наиболее распространённый первичный продукт глюкоза. Побочным является кислород.
IV.4. Энергетика экосистем
Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т. п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конечном счете связаны все возможности ее высвобождения из химических связей органического вещества.
Часть энергии переходит в тело организма-потребителя вместе с увеличивающейся массой (приростом, продукцией). Некоторая доля пищи, а вместе с ней и энергия не усваиваются организмом. Они выводятся в окружающую среду вместе с продуктами жизнедеятельности (экскрементами). В последующем эта энергия высвобождается другими организмами, которые потребляют продукты выделения.
Баланс пищи и энергии для отдельного животного организма можно, таким образом, представить в виде следующего уравнения:
Количество энергии, расходуемой организмами на различные цели, неоднозначно. В периоды интенсивной жизнедеятельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев превышают поступление (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременности), в теле фиксируется значительное количество энергии.
Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выделяют с экскрементами до 70% энергии. Однако при всем разнообразии расходов энергии в среднем максимальны траты на дыхание, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».
Данное правило надо оценивать как относительное, ориентировочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.
Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энергии. Особенно велики потери энергии при переходе с первого трофического уровня на второй, от растений к травоядным животным.
Часто в экологической литературе рассматривается в качестве примера цепь питания: люцерна-телята-мальчик. Показано, что если бы мальчик весом 48 кг питался только телятиной, то за год ему потребовалось бы для обеспечения жизнедеятельности 4,5 теленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Такова энергетическая цена животной пищи.
Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере относительны, если они не учитывают, какой в среднем удельный вес в рационе отводится животной и растительной пище. Если исходить из рациона питания зажиточной части населения, потребляющей мяса 80-100 кг в год на одного человека, то явно невозможно обеспечение таким рационом современной численности населения Земли (около 6 млрд. человек). Если же исходить из необходимости обеспечения минимальных потребностей жизнедеятельности организма, при настоящем производстве продуктов питания возможно исключить голод и, кроме того, прокормить на 3-4 миллиарда населения больше современного. Для этого требует решения вопрос более сбалансированного распределения продуктов питания. Переход на вегетарианство и тем более расширение ассортимента растений, используемых в пищу, может обеспечить жизнедеятельность (с энергетической точки зрения) численности населения в 2-3 раза больше современной. Ясно, однако, что при этом останутся нерешенными многие медико-биологические проблемы здоровья и долголетия, а также допустимые пределы антропогенных нагрузок на экосистемы и биосферу в целом.
Глава 2. Факторы среды
2.2. Условия и ресурсы
2.2.1. Ресурсы
Для растений ресурсами являются свет, вода, элементы минерального питания, диоксид углерода, для насекомоопыляемых – насекомые‑опылители (ветер как опылитель является фактором‑условием). Для животных‑фитофагов ресурсом являются растения, для зоофагов (хищников) – живые животные, для детритофагов‑сапротрофов и редуцентов (бактерии, грибы) – мертвое органическое вещество. Для большинства организмов необходимым ресурсом является кислород.
Свет. Это основной источник энергии для наземных и водных экосистем. При этом из всех щедрот солнечной энергии, поступающей на Землю, на фотосинтез расходуется сравнительно небольшая часть света. Только культуре микроскопических морских водорослей удалось достичь использования для целей фотосинтеза 4,5%. В наземных экосистемах усвоение солнечной энергии для фотосинтеза не превышает 1–3% (тропические леса) и составляет в лесах умеренных широт 0,6–1,2%, а в посевах сельскохозяйственных культур даже с наиболее плотным пологом растений он не выше 0,6%.
Все экосистемы Земли используют в процессе фотосинтеза не более 0,001% от всего потока энергии, поступающей с солнечным светом на Землю. В 30–40 раз больше растения используют тепловой энергии солнечного света на испарение (транспирацию). В результате транспирации через корни, стебли и листья растений прогоняется раствор элементов питания, необходимый для их жизнедеятельности. Кроме того, это спасает растения от перегрева.
Для фотосинтеза используется лишь часть световых волн – в диапазоне 400–700 нм. Эта часть солнечной энергии составляет около 40% поступающего на Землю света и называется фотосинтетически активной радиацией (ФАР). Наибольшее значение в составе ФАР имеют оранжево‑красные и сине‑фиолетовые лучи. При прохождении через большую толщу воды эти части света отфильтровываются, и до глубоких слоев доходят в основном зеленые лучи. Однако если эти лучи плохо усваиваются зелеными растениями, то за счет дополнительных пигментов их могут использовать красные водоросли (Rhodophyta). Бактерии‑фототрофы также используют часть света, но с иным диапазоном длины волны – 800–900 нм.
Во многих случаях количество света избыточно, и потому интенсивность фотосинтеза не лимитируется поступающей солнечной энергией. Дефицит света наблюдается в затененных местообитаниях, например под густым пологом древостоя. В таких условиях у теневыносливых растений (сциофитов) выражен специальный синдром признаков теневыносливости, позволяющий усвоить больше света (тонкие листья, высокое содержание хлорофилла). Типичные сциофиты – папоротники, обитающие в расщелинах скал, например, листовика (Phyllitis scolopendrium).
Эффективность усвоения света в сообществах растений повышается за счет специальных приспособлений: вертикальное расположение листьев злаков, использующих свет, падающий на лист под острым углом (луга и степи); многослойная крона листьев (леса). Показателем числа слоев листьев, через которые проходит свет, является индекс листовой поверхности (ИЛП), который определяется как отношение площади листьев к площади поверхности почвы, над которой они находятся. В разомкнутых сообществах пустынь ИЛП составляет доли единицы, в большинстве луговых сообществ – равен 4–6, а в еловом лесу – может достигать 12, то есть на 1 гектар леса приходится 12 гектаров поверхности листьев (Работнов, 1992).
Экологическое значение имеют и невидимые лучи, т.е. не воспринимаемые глазом человека. Так самые короткие ультрафиолетовые лучи при высокой интенсивности ослабляют иммунную систему животных, в особенности человека, при умеренной интенсивности они способствуют образованию витамина D в животных организмах. Инфракрасные (тепловые) лучи влияют на температурный режим теплокровных животных, при повышении их интенсивности снижается активность окислительных процессов.
Свет является неисчерпаемым ресурсом, который постоянно поступает на Землю в результате солнечной радиации.
Вода. Необходимым фактором жизни любого организма является его обводнение, так как именно вода является средой, в которой протекают все основные метаболические процессы. Ни один организм не обладает надежной системой сохранения воды, содержащейся в его клетках, и потому этот ресурс нуждается в постоянном пополнении. Вода – важнейший ресурс, участвующий в фотосинтезе, хотя основная ее часть, которая всасывается корнями растений, расходуется на испарение, что связано во многом с процессом поглощения через устьица диоксида углерода для фотосинтеза (мембран, которые способны «впускать» углекислый газ и «не выпускать» воду, нет).
Специальные приспособления характерны для растений, обитающих в условиях дефицита влаги (см. 4.4.3), и растений избыточно увлажненных местообитаний (у водных растений проводящая система замещена воздухоносной тканью – аэренхимой).
Нет необходимости говорить о различиях водных и наземных животных. Среди наземных животных существуют виды с разной потребностью в воде. Так животные пустыни, где постоянно ощущается дефицит воды, значительное количество воды получают при разложении жиров, которые выступают запасниками потенциальной влаги. «Депо» жиров у тушканчиков, песчанок находится в хвосте, у верблюда – в горбе.
Степень доступности воды накладывает ограничения на распространение многих видов животных и на потребление ими других ресурсов. Не только домашний скот, но и дикие копытные животные могут разрушить травостой в результате перевыпаса только близ водопоев, хотя радиусы пастьбы у них значительно больше, чем у коров или овец. По этой причине отдаленные от воды участки злаковника или саванны оказываются лучше сохранившимися.
Круговорот воды в биосфере делает ее неисчерпаемым (возобновимым) ресурсом, однако под влиянием человека этот круговорот изменился (см. 13.2.2). Кроме того, во многих районах вода сильно загрязнена, что ограничивает возможность использования ее организмами многих видов, включая человека.
Диоксид углерода. Этот ресурс необходим для фотосинтеза, но его содержание в атмосфере столь велико, что в естественных условиях он не лимитирует процесс синтеза органического вещества. Аналогично не лимитирует интенсивность фотосинтеза водных растений содержание диоксида углерода в воде.
Диоксид углерода является не только прямым фактором‑ресурсом, но и косвенным фактором, влияющим на климат. В результате сжигания больших количеств топлива, содержащего углерод, концентрация диоксида углерода в атмосфере повышается. В итоге происходит потепление климата (см. 13.2.1).
Элементы питания. Элементы, необходимые для жизни организмов, называются биогенными. Из 54 элементов периодической таблицы, которые встречаются в природе, около половины их важны либо для животных, либо для растений. Основные биогены называются макроэлементами, шесть из них нужны всем живым существам и в больших количествах. Чтобы запомнить их, экологи составили из латинских букв, соответствующих химическим символам, смешное слово CHNOPS («ЧНОПС»: С – углерод, Н – водород, N – азот, О – кислород, Р – фосфор, S – сера).
Из других макроэлементов важны: кальций, калий, магний, причем кальций в больших количествах необходим позвоночным и моллюскам для построения скелета или раковин, а магний – растениям, так как он входит в состав молекулы хлорофилла.
Остальные элементы нужны организмам в меньших количествах и называются микроэлементами. Растениям необходимы 10 микроэлементов, в том числе для фотосинтеза – марганец, железо, хлор, цинк, ванадий; для азотного обмена – молибден, бор, кобальт, железо; для прочих метаболических реакций – марганец, бор, кобальт, медь, кремний. Все эти элементы, кроме бора, нужны и животным. Кроме того, животным необходимы селен, хром, никель, йод, фтор, олово, мышьяк.
У разных растений отмечаются свои «пристрастия» к микроэлементам. Так некоторым папоротникам для нормального развития необходим алюминий, диатомовым водорослям – кремний, а некоторым зеленым водорослям – селен. Для успешного симбиоза азотфиксирующих бактерий и бобовых (см. 8.6) необходим кобальт.
Кислород. Этот элемент необходим для дыхания подавляющему большинству организмов, однако его дефицит наблюдается только в водных экосистемах и переувлажненных почвах, что связано с низкой растворимостью кислорода в воде. Если в 1 л воздуха содержится 210 см 3 кислорода, то в воде его содержание не превышает 10 см 3 л, причем растворимость кислорода снижается при повышении температуры и солености. Это делает кислород фактором, ограничивающим возможности жизни многих обитателей водоемов. Они гибнут летом при повышении температуры и зимой при заморозк, когда вода изолирована от атмосферы слоем льда и весь кислород израсходован организмами.
Пополнение запаса кислорода в воде происходит за счет его поступления из воздуха, причем этот медленный процесс может ускорить сильный ветер. Кислород выделяют водные растения, в первую очередь фитопланктон, в процессе фотосинтеза. По этой причине содержание кислорода связано с количеством света, который проникает в водную толщу, что в свою очередь зависит от прозрачности воды. Поэтому, чем вода прозрачнее, тем выше в ней содержание кислорода. Все это объясняет сложную динамику содержания кислорода в воде в зависимости от типа водоема, времени суток и времени года.
В подтапливаемых почвах, т.е. с близким уровнем грунтовых вод, корни древесных растений избегают глубоких пересыщенных водой горизонтов. В зоне дефицита кислорода они практически не всасывают воду и растворенные в ней элементы минерального питания.
Пространство. Физическое пространство является ресурсом, потому что любые факторы‑ресурсы, которые потребляются организмами, занимают определенную территорию. Растения, чтобы проходить нормальный жизненный цикл, должны получить определенную площадь «под солнцем» и некоторый объем почвы для потребления воды и элементов минерального питания (площадь питания). Животным‑фитофагам нужен «участок пастбища» (для тли это будет часть листа, для косяка лошадей – десятки гектаров степи, для стада слонов – десятки квадратных километров), плотоядным животным – охотничьи наделы.
Сравнительно редко физическое пространство может быть ресурсом само по себе вне зависимости от того, какие «съедобные» ресурсы с ним связаны. Такое возможно лишь в тех случаях, когда возникает острый дефицит жизненного пространства. Например,при нехватке места одни луковицы крокусов выталкивают другие из земли. В поселениях мидий раковины так плотно прижаты друг к другу, что между ними не могут втиснуться новые претенденты поселиться на том же камне.
Дефицит пространства (как резервуара ресурсов) является фактором, который во многом определяет характер взаимоотношений между особями одного вида или разных видов. Об этом еще предстоит специальный разговор (см. 8.2), тем не менее отметим, что дефицит пространства (чрезмерно высокая плотность использующих его особей) снижает рождаемость, повышает смертность (в первую очередь у растений) и способствует миграции подвижных организмов (животных) на более свободные территории.
Организмы как пищевые ресурсы. Использование организмов как пищевых ресурсов возможно в трех вариантах:
1. хищничество – съедание организма‑ресурса в живом состоянии. Организм‑ресурс при этом может быть убит (как заяц волком) или съеден по частям при сохранении его живым (поедание растений фитофагами, питание оводов и слепней сельскохозяйственными животными);
2. паразитизм – длительное использование живого организма‑ресурса как среды жизни и источника пищи;
3. детритофагия – поедание мертвого организма.
Особенности организмов, которые используют эти способы гетеротрофного питания, будут рассмотрены в разделе 10.2. Познакомимся с питательными качествами (химическим составом и усвояемостью) разных организмов как ресурсов.
Растения и животные резко различаются как пищевые ресурсы. Клеточные оболочки растений образованы целлюлозой и лигнином, по этой причине количественное соотношение углерода и азота (С:N) в растительных тканях составляет от 20:1 до 40:1. У животных, клетки которых лишены «целлюлозного чехла», содержание углерода гораздо ниже, и это соотношение составляет от 8:1 до 10:1.
У фитофагов нет ферментов, позволяющих переваривать целлюлозу, поэтому усвоение растительной пищи всегда очень низкое. Чтобы разрушить оболочки клеток, фитофаги тщательно измельчают (пережевывают) пищу. Тем не менее, разложение целлюлозы выполняют живущие в пищеварительном тракте фитофагов прокариоты и низшие животные, которые обладают целлюлозолитическими ферментами (они связаны с фитофагами отношениями мутуализма, см. 8.6). Животные‑детритофаги стремятся поедать растительный детрит не в «свежем состоянии», а когда он уже заселен микроорганизмами‑редуцентами.
Разные ткани растений имеют разный химический состав: концентрация азота и других элементов минерального питания выше в меристематических тканях, клетки которых делятся, а углеводов – в ситовидных трубках флоэмы и в некоторых запасающих тканях (в клубнях, семенах), которые являются самыми питательными частями растений. Самые высокие концентрации целлюлозы и лигнина – в старых отмерших тканях, например в древесине.
Различия химического состава служат причиной специализации насекомых‑фитофагов для поедания разных тканей (например,разных видов дубовых галлиц, личинки которых питаются молодыми и старыми листьями, вегетативными почками, мужскими цветками, тканями корня и т.д.). Большинство насекомых‑фитофагов, тем не менее, избегает потребления старых одревесневших тканей.
Зоофаги измельчают свою пищу незначительно и часто вообще заглатывают ее целиком. Как подчеркивают М. Бигон и др. (1989) проблем с пищеварением у них нет, «…да и по строению своего пищеварительного аппарата они различаются довольно мало; их заботит скорее то, как добычу отыскать, изловить, умертвить и съесть» (с. 155).
1. На каком принципе основывается различение факторов‑ресурсов и факторов‑условий?
2. Какая доля солнечной энергии усваивается растениями при фотосинтезе?
4. Как определяется индекс листовой поверхности (ИЛП)?
5. В каких условиях свет может быть лимитирующим фактором?
6. Расскажите об экологической роли невидимых лучей.
7. Какую роль играет вода в жизни растений?
8. Как влияет обеспеченность водой на потребление животными других ресурсов?
9. Охарактеризуйте диоксид углерода как прямой и косвенный экологический фактор.
10. Что означает слово «CHNOPS»?
11. Каково соотношение азота и фосфора в биомассе?
12. Какие элементы питания растений и животных называются микроэлементами?
13. В каких экосистемах кислород является лимитирующим фактором?
14. Чем объясняется взаимообусловленность освещенности и содержания в воде кислорода в водных экосистемах?
15. Расскажите о пространстве как факторе‑ресурсе.
16. Какие варианты использования организмов как ресурсов Вы знаете?
17. Сравните растительные и животные организмы как пищевые ресурсы.
18. Почему животным трудно переваривать растительную пищу?
РАСПРЕДЕЛЕНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ
Первоисточником энергии для экосистем служит Солнце. Экосистемы существуют за счет не загрязняющей среду и практически вечной солнечной энергии, которая распространяется в пространстве в виде электромагнитных волн, из которых 48 % приходится на видимую часть спектра, 45 % − на инфракрасное излучение (с большой длиной волны) и около 7 % − на коротковолновое ультрафиолетовое излучение. При прохождении солнечной энергии через атмосферу приблизительно 19 % поглощается облаками, водяным паром и т. д., 34 % отражается обратно в космос,
Растения используют около 0,5 – 1 % солнечной энергии, достигающей поверхности Земли. Аккумулируя энергии, живые организмы увеличивают свою массу. Масса организмов определенной группы (продуцентов, консументов, редуцентов) или экосистемы в целом, приходящаяся на единицу площади или объёма, называется биомассой. Самой высокой биомассой обладают тропические дождевые леса, самой низкой – пустыни и тундры. Зеленые растения в биомассе суши составляют 99 %, а животные и микроорганизмы – 1 %. Биомассу измеряют в единицах массы или выражают количеством энергии, заключенной в тканях.
Энергия, усваиваемая продуцентами в процессе фотосинтеза и накапливаемая в виде органических веществ, называется первичной продукцией, а консументами – вторичной продукцией.
Первичная продукция делится на валовую и чистую. Валовая первичная продукция – это общая биомасса, созданная растениями в ходе фотосинтеза. Часть ее расходуется на поддержание жизнедеятельности растений – траты на дыхание (40–70 %). Оставшаяся часть составляет чистую первичную продукцию, которая в дальнейшем накапливается консументами и редуцентами или накапливается в экосистеме.
3.4. ТРОФИЧЕСКИЕ ЦЕПИ И СЕТИ В ЭКОСИСТЕМЕ. ЭКОЛОГИЧЕСКИЕ ПИРАМИДЫ
Различают два типа пищевых цепей.
1. Цепи выедания (или пастбищные) – пищевые цепи, начинающиеся с живых фотосинтезирующих организмов, от продуцентов к консументами на вынос из экосистемы.
2. Цепи разложения (или детритные) – пищевые цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных. Цепи выедания преобладают в водных экосистемах, цепи разложения – в экосистемах суши.
В чистом виде приведенные выше цепи питания в природе не встречаются, т.к. одни и те же виды включены в одну или несколько цепей питания. Это происходит потому, монофагов в природе мало, чаще встречаются олигофаги и полифаги. Общие звенья связывают цепи питания в единый комплекс, который называется пищевой сетью.
Графическим отображением функциональной организованности экосистем являются экологические пирамиды: биомасс, чисел (пирамида Элтона), энергии (продукции) (рис 4).
В 1942 г. американский гидробиолог Р. Линдеман установил, что если оценить биопродукцию в последовательных трофических уровнях в любой экосистеме, то получится убывающий ряд чисел, каждое из которых примерно в 10 раз меньше предыдущего.
Рис. 4. Три вида экологических пирамид, представляющие упрощенную экосистему: люцерна – телята – мальчик 12 лет (по Одуму, 1959)
В экологию оно вошло под названием «закон десяти процентов, или правило Линдемана»: с одного трофического уровня экологической пирамиды переходит на другой более высокий ее уровень в среднем 10 % энергии, поступившей на предыдущий уровень экологической пирамиды энергии. Среднемаксимальный переход с одного трофического уровня экологической пирамиды на другой ее уровень десяти процентов энергии (от 7 % до 17 %) или вещества в энергетическом выражении в большинстве случаев не ведет к отрицательным последствиям для развития экосистем. Пирамиды дают две фундаментальные характеристики любой экосистемы:
— высота пирамиды пропорциональна длине пищевой цепи;
— форма пирамиды, а точнее, наклон сторон ее, показывает эффективность превращения энергии при переходе с одного трофического уровня на другой, более высокий ее уровень.
Дата добавления: 2017-11-21 ; просмотров: 1598 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ