какая информация может содержаться в базе данных
Что такое База Данных (БД)
База данных — это место для хранения данных. Используется в том числе в клиент-серверной архитектуре. Это все интернет-магазины, сайты кинотеатров или авиабилетов. Вы делаете заказ, а система сохраняет ваши данные в базе.
В этот статье я на простых примерах расскажу, что такое база данных и как она выглядит. А потом поясню некоторые термины из конкретной (реляционной) базы. Те, с которыми вы почти наверняка столкнетесь на работу.
Статья рассчитана на начинающих тестировщиков или аналитиков, то есть тех, кто будет работать с базой, но не на супер-глубоком уровне. Она для тех, кто только входит в мир ИТ, и многого не знает. Она объясняет, что это за звено в клиент-серверной архитектуре такое, и зачем оно нужно.
Содержание
Что такое база данных
База данных — хранилище, куда приложение складывает свои данные. Если приложение небольшое, отдельная база не нужна. Но потом это становится удобнее и выгоднее с точки зрения памяти.
Катя решила открыть свой магазинчик. Она нашла хорошую марку обуви, которую «днем с огнем» не сыскать в ее городе. Заказала оптовую партию и стала потихоньку распродавать через знакомых. Пришлось освободить половину шкафа под коробки, но вроде всё поместилось.
Обувь хорошая, в розницу заказывать в других местах невыгодно — и вот уже у Кати есть постоянные клиенты, которые приводят друзей. Как только какая-то пара заканчивается, Катя делает новый заказ.
Но покупатели хотят новинок, разных размеров. Да и самих покупателей становится все больше и больше. В шкаф коробки уже не влезают!
Теперь, если покупатель просит определенную пару, Катьке сложно её найти. Пока коробок было мало, она помнила наизусть, где что лежит. А теперь уже нет, да и все попытки организовать систему провалились. Места мало, да и детки любят с коробками поиграть.
Тогда Катька решила арендовать складское помещение. И вот теперь красота! Не надо теснить своих домашних, дома чисто и свободно! И на складе место есть, появилась система — тут босоножки, тут сапоги.
Чем больше объемы производства, тем больше нужно места. Если в начале пути склад не нужен, всё поместится дома, то потом это будет оправданно.
Тоже самое и в приложениях. Если приложение маленькое, то все данные можно хранить в памяти. Но учтите, что это память на вашем компьютере, вашем телефоне. И чем больше данных туда пихать, тем медленнее будет работать программа.
Место в памяти ограничено. Поэтому когда данных много, их нужно куда-то сложить. Можно писать в файлики, а можно сохранять информацию в базу данных (сокращенно БД). Выбор за вами. А точнее, за вашим разработчиком.
Как она выглядит
Да примерно как excel-табличка! Есть колонки с заголовками, и информация внутри:
Это называется реляционная база данных — набор таблиц, хранящихся в одном пространстве.
Что за пространство? Ну вот представьте, что вы храните все данные в excel. Можно запихать всю-всю-всю информацию в одну огро-о-о-о-мную таблицу, но это неудобно. Обычно табличек несколько: тут информация по клиентам, там по заказам, а тут по адресам. Эти таблицы удобно хранить в одном месте, поэтому кладем их в отдельную папочку:
Так вот пространство внутри базы данных — это та же самая папочка в винде. Место, куда мы сложили свои таблички, чтобы они все были в одном месте.
Пример базы Oracle
Цель та же — выделить отдельное место, чтобы у вас не была одна большая свалка:
заходишь в папку в винде → видишь файлики только из этой папки
заходишь в пространство → видишь только те таблицы, которые в нем есть
Хранение данных в виде табличек — это не единственно возможный вариант. Вот вам для примера запись из таблицы в системе Users. Там используется MongoDB база данных, она не реляционная. Поэтому вместо таблички «словно в excel» каждая запись хранится в виде объекта, вот так:
А еще есть файловые базы — когда у вас вся информация хранится в файликах. Да-да, простых текстовых файликах!
Почитать о разных видах баз данных можно в википедии. Я не буду в этой статье углубляться в эту тему, потому что моя задача — объяснить «что это вообще такое» для ребят, которые базу в глаза не видели. А на работе они скорее всего столкнутся именно с реляционной базой данных, поэтому о ней и речь.
Как получить информацию из базы
Нужно записать свой запрос в понятном для базы виде — на SQL. SQL (Structured Query Language) — язык общения с базой данных. В нем есть ключевые слова, которые помогут вам сделать выборку:
select — выбери мне такие-то колонки.
from — из такой-то таблицы базы.
where — такую-то информацию.
Например, я хочу получить информацию по клиенту «Назина Ольга». Составляю в уме ТЗ:
В дословном переводе:
Комментарии в Oracle/PLSQL — мой перевод остается работающим запросом, потому что я убрала «лишнее» в комментарии
Если бы у меня была не база данных, а простые excel-файлики, то же действие было бы:
Открыть файл с нужными данными (clients)
Поставить фильтр на колонку «ФИО» — «Назина Ольга».
То есть нам в любом случае надо знать название таблицы, где лежат данные, и название колонки, по которой фильтруем. Это не что-то страшное, что есть только в базе данных. Тоже самое есть в простом экселе.
Бывают запросы и сложнее — когда надо достать данные не из одной таблицы, а из разных. В базе это будет выглядеть даже лучше, чем в эксельке. В экселе вам нужно открыть 1-2-3 таблицы и смотреть в каждую. Неудобно.
А в базе данных вы внутри запроса SQL указываете, какие колонки из каких таблиц вам нужны. И результат запроса их отрисовывает. Скажем, мы хотим увидеть заказ, который сделал клиент, ФИО клиента, и его номер телефона. И всё это в разных таблицах! А мы написали запрос и увидели то, что нам надо:
id_order
order (таблица order)
fio (таблица client)
phone (таблица contacts)
И пусть в таблице клиентов у нас будет 30 колонок, а в таблице заказов 50, в результате выборки мы видим ровно 4 запрошенные. Удобно, ничего лишнего!
Конечно, написать такой запрос будет немного сложнее обычного селекта. Это уже select join, почитать о нем можно тут. И я рекомендую вам его изучить, потому что он входит в «базовое знание sql», которое требуется на собеседованиях.
Результаты выборки можно группировать, сортировать — это следующий уровень сложности. См раздел «статьи и книги по теме» для получения большей информации.
Как связать данные между собой
Вот например, у нас есть интернет-магазин по доставке пиццы. Так выглядит его база данных:
В таблице «client» лежат данные по клиентам: ФИО, пол, дата рождения и т.д.
last_name
first_name
birthdate
В таблице «orders» лежат данные по заказам. Что заказали (пиццу, суши, роллы), когда, насколько довольны доставкой?
order
addr
date
time
Роллы «Филадельфия» и «Канада»
Пицца 35 см, роллы комбо 1
Пицца с сосиками по краям
Комбо набор 3, обед №4
Но как понять, где чей был заказ? Сколько раз заказывал Вася, а сколько Алина?
Тут есть несколько вариантов:
1. Запихать все данные в одну таблицу: тут и заказы, и информация по клиентам. В целом удобно, открыл табличку и сразу видишь — ага, это Васин заказ, а это Машин.
Таблица все растет и растет, в итоге получается просто огромной! А когда данных много, легкость чтения пропадает, придется листать до нужной колонки.
Поиск будет работать медленнее. Чем меньше информации в таблице, тем быстрее поиск. Когда у нас много строк, количество колонок становится существенным.
Много дублей — один человек может сделать хоть сотню заказов. И вся информация по нему будет продублирована сто раз. Неоптимальненько!
Чтобы избежать дублей, таблицы принято разделять:
Новые объекты отдельно
Но надо при этом их как-то связать между собой, мы ведь всё еще хотим знать, чей конкретно был заказ. Для связи таблиц используется foreign key, внешний ключ.
Нам надо у заказа сделать отметку о клиенте. Значит, таблица «orders» будет ссылаться на таблицу «clients». Ключ можно поставить на любую колонку таблицы (в некоторых базах колонка должна быть уникальной, сначала её нужно такой указать). Какую бы выбрать?
Можно ссылаться на имя. А что, миленько, в таблице заказов будем сразу имя видеть! Но минуточку. А если у нас два клиента Ивана? Или три Маши? Десять Саш. Ну вы поняли =) И как тогда разобраться, где какой клиент? Не подходит!
Можно вешать foreign key на несколько колонок. Например, на фамилию + имя, или фамилию + имя + отчество. Но ведь и ФИО бывают неуникальные! Что тогда? Можно добавить в связку дату рождения. Тогда шанс ошибиться будет минимален, хотя и такие ребята существуют. И чем больше клиентов у вас будет, тем больше шанс встретить дубликат.
А можно не усложнять! Вместо того, чтобы делать внешний ключ на 10 колонок, лучше создать в таблице клиентов primary key, первичный ключ. Первичный ключ отвечает за то, чтобы каждое значение в поле было уникальным, никаких дублей. При попытке добавить в таблицу запись с неуникальным первичным ключом получаешь ошибку:
Здесь ключ — «id_order»
Вот на него и нужно ссылаться! Обычно таким ключом является ID, идентификатор записи. Его можно сделать автоинкрементальным — это значит, что он генерируется сам по алгоритму «прошлое значение + 1».
Например, у нас гостиница для котиков. Это когда хозяева едут в отпуск, а котика оставить не с кем — оставляем в гостинице!
База данных. Реляционная база данных
Что такое базы данных (БД) и зачем они нужны
База данных (БД) — это программа, которая позволяет хранить и обрабатывать информацию в структурированном виде.
БД это отдельная независимая программа, которая не входит в состав языка программирования. В базе данных можно сохранять любую информацию, чтобы позже получать к ней доступ.
Пример использования
Базы данных нужны для хранения информации. Чтобы получить полное понимание необходимости использования БД в современном веб-программировании, необходимо ответить на три вопроса:
Предположим, вы решили сделать сайт, где каждый пользователь может вести личный дневник наблюдения за погодой в своем городе.
Такой сайт должен иметь как минимум одну форму ввода со следующими полями: город, дата, температура, облачность, погодное явление, и так далее.
Каждый день наблюдатель записывает показания погоды в эту форму, чтобы когда-нибудь в будущем вернуться на сайт и посмотреть, какая была погода месяц или даже год назад.
Из этого примера следует, что программист каким-то образом должен сохранять данные из формы для дальнейшего использования.
Кроме обычного просмотра дневника погоды за месяц в виде таблицы, можно сделать и более сложный проект.
Например, чтобы электронный дневник чем-то качественно отличался от своего бумажного аналога, будет неплохо добавить туда возможности для простого анализа: показать какой день был самым холодным в ноябре или какой продолжительности была самая длинная серия пасмурных дней.
Получается, что данные надо не просто как-то хранить, но и иметь возможность их обрабатывать и анализировать.
Именно для этих целей и существуют базы данных.
Как хранится информация в БД
В основе всей структуры хранения лежат три понятия:
База данных
База данных — это высокоуровневное понятие, которое означает объединение совокупности данных, хранимых для выполнения одной цели.
Если мы делаем современный сайт, то все его данные будут храниться внутри одной базы данных. Для сайта онлайн-дневника наблюдений за погодой тоже понадобится создать отдельную базу данных.
Таблица
По отношению к базе данных таблица является вложенным объеком. То есть одна БД может содержать в себе множество таблиц.
Аналогией из реального мира может быть шкаф (база данных) внутри которого лежит множество коробок (таблиц).
Таблицы нужны для хранения данных одного типа, например, списка городов, пользователей сайта, или библиотечного каталога.
Таблицу можно представить как обычный лист в Excel-таблице, то есть совокупность строк и столбцов.
Наверняка каждый хоть раз имел дело с электронными таблицами (MS Excel).
Заполняя такую таблицу, пользователь определяет столбцы, у каждого из которых есть заголовок. В строках хранится информация.
В БД точно также: создавая новую таблицу, необходимо описать, из каких столбцов она состоит, и дать им имена.
Запись
Запись — это строка электронной таблицы.
Это неделимая сущность, которая хранится в таблице. Когда мы сохраняем данные веб-формы с сайта, то на самом деле добавляем новую запись в какую-то из таблиц базы данных. Запись состоит из полей (столбцов) и их значений. Но значения не могут быть какими угодно.
Определяя столбец, программист должен указать тип данных, который будет храниться в этом столбце: текстовый, числовой, логический, файловый и т.д. Это нужно для того, чтобы в будущем в базу не были записаны данные неверного типа.
Соберем всё вместе, чтобы понять, как будет выглядеть ведение дневника погоды при участии базы данных.
Теперь можно быть уверенными, что наблюдения наших пользователей не пропадут, и к ним всегда можно будет получить доступ.
Реляционная база данных
Английское слово „relation“ можно перевести как связь, отношение.
А определение «реляционные базы данных» означает, что таблицы в этой БД могут вступать в отношения и находиться в связи между собой.
Что это за связи?
Например, одна таблица может ссылаться на другую таблицу. Это часто требуется, чтобы сократить объём и избежать дублирования информации.
В сценарии с дневником погоды пользователь вводит название своего города. Это название сохраняется вместе с погодными данными.
Но можно поступить иначе:
Так мы решим сразу две задачи:
Связи между таблицами в БД бывают разных видов.
В примере выше использовалась связь типа «один-ко-многим», так как одному городу может соответствовать множество погодных записей, но не наоборот!
Бывают связи и других типов: «один-к-одному» и «многие-ко-многим», но они используются значительно реже.
информатика
Лекции
1. Введение
ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: «Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги..»
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВ- БУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском- 33 буквы, английском- 26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором «говорит» компьютер, только набор букв в этом языке является минимально возможным.
В КОМПЬЮТЕРЕ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛА- НОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится «аски», означает «Американский Стандартный Код для Обмена Информацией»- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Путеводитель по базам данных в 2021 г
Данные — это один из наиболее важных компонентов геопространственных технологий и, пожалуй, любой другой отрасли. К управлению данными сейчас относятся серьезно во всех отраслях, поэтому знания по этой дисциплине имеют важное значение для карьеры ИТ-специалистов. Этот цикл статей задуман как универсальное руководство, в котором мы рассмотрим тему от и до, начиная с вопроса «Что такое данные?» и заканчивая изучением и применением геопространственных запросов.
Основные понятия баз данных
Что такое данные?
Данные могут представлять собой любую информацию, которая сохраняется с целью обращения к ней в будущем. Эта информация может включать числа, текст, аудио- и видеоматериалы, местонахождение, даты и т. д. Она может быть записана на бумаге либо сохранена на жестком диске компьютера или даже в облаке.
Что такое база данных?
Множество записей данных, собранных вместе, образуют базу данных. Базы данных обычно создаются для того, чтобы пользователи могли обращаться к большому количеству данных и массово выполнять с ними определенные операции.База данных может хранить что угодно: представьте себе, например, блокнот вашей бабушки со всеми ее вкусными рецептами, учетную книгу ваших родителей, куда они записывают все доходы и расходы, или свою страницу в Facebook со списком всех ваших друзей. Из этих примеров видно, что все данные в базе данных относятся более-менее к одному типу.
Зачем нужна база данных?
Создание базы данных упрощает разным пользователям доступ к наборам информации. Приведенные выше примеры показывают, что в базе данных мы можем хранить записи с информацией похожего типа, но это правда лишь отчасти, поскольку с появлением баз данных NoSQL это определение меняется (подробнее читайте далее в статье).Так как размер веб-сайтов становится все больше и степень их интерактивности все выше, данные о пользователях, клиентах, заказах и т. д. становятся важными активами компаний, которые испытывают потребность в надежной и масштабируемой базе данных и инженерах, способных в ней разобраться.
Система управления базами данных (СУБД)
Итак, мы уже знаем, что данные и базы данных важны, но как осуществляется работа с базами данных в компьютерных системах? Вот тут на сцену и выходит СУБД. СУБД — это программное обеспечение, предоставляющее нам способ взаимодействия с базами данных на компьютере для выполнения различных операций, таких как создание, редактирование, вставка данных и т. д. Для этого СУБД предоставляет нам соответствующие API. Редко какие программы не используют СУБД для работы с данными, хранящимися на диске.Помимо операций с данными СУБД также берет на себя резервное копирование, проверку допуска, проверку состояния базы данных и т. д. Поэтому рекомендуется всегда использовать СУБД при работе с базами данных.
Пространственные данные и база данных
Особое внимание мы уделим обработке пространственных данных, поэтому я хотел бы обсудить здесь этот тип данных. Пространственные данные несколько отличаются от остальных. Координаты необходимо сохранять в особом формате, который обычно указан в документации на веб-сайте о базе данных. Этот формат позволяет базе считывать и правильно воспринимать координаты. Если обычно для поиска данных мы используем запросы типа Получить все результаты, где возраст > 15, то пространственный запрос выглядит как-то так: Получить все результаты в радиусе 10 км от определенной точки. Поэтому пространственные данные необходимо хранить в надлежащем формате.
Типы баз данных
Базы данных обычно делятся на два типа: реляционные и нереляционные. Оба типа имеют свои плюсы и минусы. Было бы глупо утверждать, что один лучше другого, поскольку это будет зависеть от варианта использования. Конкретно для пространственных данных я в 99 % случаев использую реляционные базы данных, и вы скоро поймете почему.
Реляционные базы данных и РСУБД
Допустим, ваш начальник просит вас создать электронную таблицу с важной информацией, включающей имена, местонахождения, адреса электронной почты, номера телефонов и должности всех сотрудников. Вы сразу же откроете таблицу Excel или Google Spreadsheets, напишете все эти названия столбцов и начнете собирать информацию.
Образец таблицы с информацией
Закономерность здесь заключается в том, что каждая запись содержит ограниченный и фиксированный набор полей, которые нам нужно заполнить. Таким образом мы создали таблицу со всей информацией, где у каждой записи имеется уникальный первичный ключ, который определяет ее однозначным образом и делает ее доступной для всех операций. В реляционных базах данных любая таблица содержит фиксированное количество столбцов, и можно устанавливать связи между разными столбцами.
Связь между двумя столбцами
Взаимосвязи в реляционных базах данных мы подробно рассмотрим позже.
По сравнению с базами данных NoSQL, недостатком реляционных баз данных является относительно медленное получение результатов, когда количество данных стремительно увеличивается (по мнению автора статьи — прим. пер.). Еще один недостаток заключается в том, что при добавлении каждой записи нужно следовать определенным правилам (типы столбцов, количество столбцов и т. д.), — мы не можем просто добавить отдельный столбец только для одной записи.В реляционных базах данных используется SQL (Structured Query Language — язык структурированных запросов), с помощью которого пользователи могут взаимодействовать с данными, хранящимися в таблицах. SQL стал одним из наиболее широко используемых языков для этой цели. Мы подробнее поговорим об SQL чуть позже.Вот примеры некоторых известных и часто используемых реляционных баз данных: PostgreSQL, MySQL, MS SQL и т. д. У каждой крупной компании, занимающейся реляционными базами данных, есть собственная версия SQL. В большинстве аспектов они выглядят одинаково, но иногда требуется немного изменить какой-нибудь запрос, чтобы получить те же результаты в другой базе данных (например, при переходе из PostgreSQL в MySQL).
Нереляционные базы данных (NoSQL)
Все базы данных, не являющиеся реляционными, относятся к категории нереляционных баз данных. Обычно данные хранятся в нетабличном формате, например:
Основное преимущество баз данных NoSQL состоит в том, что все строки независимы и могут иметь разные столбцы. Как показано на изображении ниже, оба пользователя относятся к одной и той же таблице Core_user, но их записи содержат разную информацию.
База данных NoSQL реального времени в Google Firebase
База данных NoSQL реального времени в Google Firebase
При использовании баз данных NoSQL пользователям иногда приходится прописывать собственную логику, чтобы добавить уникальный ключ к каждой записи и тем самым обеспечить доступ к записям. В большинстве стандартных баз данных NoSQL, таких как Firebase и MongoDB, для хранения данных используется формат JSON. Благодаря этому очень легко и удобно выполнять операции с данными из веб-приложений, используя JavaScript, Python, Ruby и т. д.
Рекомендации по выбору типа базы для хранения пространственных данных
Очевидно, что нам хотелось бы сохранить точку, линию, многоугольник, растры и т. д. так, чтобы это имело смысл, вместо того чтобы сохранять просто координаты. Нам нужна СУБД, которая позволяет не только сохранять данные, но и запрашивать их пространственными методами (буфер, пересечение, вычисление расстояния и т. д.). На сегодняшний день для этого лучше всего подходят реляционные базы данных, поскольку в SQL есть функции, помогающие выполнять подобные операции. Использование таких дополнительных средств, как PostGIS для PostgreSQL, открывает разработчикам возможности для написания сложных пространственных запросов. С другой стороны, NoSQL тоже работает в области геопространственных технологий: например, MongoDB предоставляет кое-какие функции для выполнения геопространственных операций. Однако реляционные базы данных все же лидируют на рынке с большим отрывом.
Работа с РСУБД
Основное внимание мы уделим РСУБД, так как именно эти системы в большинстве случаев мы будем использовать для хранения пространственных данных и работы с ними. В качестве примера мы будем использовать PostgreSQL, поскольку это самая перспективная реляционная база данных с открытым исходным кодом, а ее расширение PostGIS позволяет работать и с пространственными данными. Вы можете установить PostgreSQL, следуя инструкциям из документации. Помимо PostgreSQL рекомендуется также загрузить и установить pgAdmin. Платформа pgAdmin предоставляет веб-интерфейс для взаимодействия с базой данных. Также для этого можно загрузить и установить какое-либо другое совместимое ПО или использовать командную строку.
pgAdmin 4 на Mac
Пользователи могут изменять множество настроек для баз данных, включая порт, имя пользователя, пароль, доступность извне, выделение памяти и т. д., но это уже другая тема. В этой статье мы сосредоточимся на работе с данными, находящимися в базе.
Создание базы данных. Нам нужно создать базу данных (в идеале должно быть по одной базе данных для каждого проекта).
Создание новой базы данных для проекта
В инструменте запросов (Query Tool) база данных создается следующим образом:
Создание таблиц. Создание таблицы требует некоторых дополнительных соображений, поскольку именно здесь нам нужно определить все столбцы и типы данных в них. Все типы данных, которые можно использовать в PostgreSQL, вы найдете здесь.
pgAdmin позволяет нам выбрать в таблице различные ключи и ограничения, например Not Null (запрет на отсутствующие значения), Primary Key (первичный ключ) и т. д. Обсудим это подробнее чуть позже.
Создание таблицы пользователей
Заметьте, что мы не добавляли столбец первичного идентификатора в список столбцов, поскольку PostgreSQL делает это автоматически. Мы можем создать сколько угодно таблиц в одной базе данных. После того как таблицы созданы, мы можем установить связи между разными таблицами, используя определенные столбцы (обычно столбцы с идентификаторами).В инструменте запросов таблица создается следующим образом:
CRUD-операции с данными в таблицах
CRUD-операции (создание, чтение, обновление и удаление — Create, Retrieve, Update, Delete) — это своего рода hello world в мире СУБД. Поскольку эти операции используются наиболее часто, команды для их выполнения одинаковы во всех РСУБД. Мы будем писать и выполнять запросы в инструменте запросов в pgAdmin, который вызывается следующим образом:
Инструмент запросов (Query Tool) в pgAdmin
1. Создание новой записи
Для добавления новой записи в таблицу используйте следующую команду:
INSERT, INTO, VALUE являются ключевыми словами в SQL, поэтому их нельзя использовать в качестве переменных, значений и т. д. Чтобы добавить новую запись в нашу таблицу пользователей, мы напишем в инструменте запросов следующий запрос:
Обратите внимание: строки всегда следует заключать в ‘ ‘ (одинарные кавычки), а не в » » (двойные кавычки).
2. Получение записей (всех или нескольких)
Данные, хранящиеся в базе данных, можно извлечь и отобразить на экране. При этом мы можем получить все данные или ограниченное количество записей. Код для получения данных:
Этот код извлекает весь набор данных. Если вы хотите получить только 20 записей, напишите:
Если вы хотите получить данные из всех столбцов, то вместо перечисления названий всех столбцов можно написать:
Если вы хотите получить результат с определенным условием, используйте ключевое слово WHERE, как показано ниже:
Вы можете создавать даже сложные запросы, о которых мы поговорим позже.В нашем примере мы можем получить нужные нам данные:
3. Обновление записей (всех или нескольких)РСУБД позволяет нам обновить все или только некоторые записи данных, указав новые значения для столбцов.
Если вы хотите обновить определенные строки, добавьте условия с использованием ключевого слова WHERE:
В нашем случае мы обновим таблицы с помощью следующих запросов:
Обновление записей
4. Удаление записей (всех или нескольких)Удалять записи в SQL легко. Пользователь может удалить либо все строки, либо только определенные строки, добавив условие WHERE.
Удаление записей из таблицы
CRUD-операции используются очень часто, поскольку выполняют основные функции в базе данных.
Перевод подготовлен в рамках курса «Базы данных». Все желающих приглашаем на бесплатный двухдневный онлайн-интенсив «Бэкапы и репликация PostgreSQL. Практика применения». Цели занятия: настроить бэкапы; восстановить информацию после сбоя. Регистрация здесь.