какая катушка называется первичной а какая вторичной
Электрические трансформаторы
К сожалению, здесь только текст без рисунков и формул.
Лекция “Электрические трансформаторы”с рисунками и формулами можно найти, если перейти по ссылке Электрические машины, размещенной в конце моей страницы Прозы.ру.
Лекция 1.
§1 Основные сведения о трансформаторах
П1 Принципиальное устройство трансформатора
Рис.2 Идеализированная схема работы трансформатора
На рисунке 2 представлена двухконтурная эквивалентная схема трансформатора учитывающая потоки рассеяния и резистивные сопротивления обмоток. (11)
Закон Кирхгофа для контуров первичной и вторичной обмоток будут иметь вид
Эти уравнения в теории трансформаторов носят названия уравнений ЭДС
Уравнения ЭДС вместе с приведенными в пункте 2 уравнениями МДС
Рис 4 Векторная диаграмма холостого хода трансформатора
Вектор тока холостого хода опережает вектор основного магнитного потока на угол магнитного запаздывания. Реактивная составляющая этого тока, то есть намагничивающий ток совпадает по направлению с вектором основного магнитного потока, а активная составляющая ему перпендикулярна.(6) Дальнейшие построения векторной диаграммы будем проводить, ориентируясь на первое уравнение ЭДС приведенного трансформатора, при токе первичной обмотки равному току холостого хода
Рис.7 Внешние характеристики трансформатора
На рисунке 7 представлена внешняя характеристика трансформатора, имеющая три процента изменения напряжения при номинальном токе нагрузки и коэффициенте мощности, равном единице и внешняя характеристика при индуктивной нагрузке.
П5 Коэффициент полезного действия трансформатора
Под коэффициентом полезного действия трансформатора понимают отношение отдаваемой трансформатором мощности к подведенной мощности
Рис 8.Трехстержневой одноплоскостной трансформатор
Что собой представляет первичная обмотка трансформатора?
Первичная обмотка трансформатора – это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.
На самодельных трансформаторах нет обозначений первичной обмотки.
Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.
Типы трансформаторных обмоток
В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:
У трансформаторов есть шесть основных типов обмотки.
На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения – строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита – X, Y, Z для входящего напряжения и x, y, z для выходящего.
Различают обмотки и по назначению:
Автоматизированный расчет намотки трансформатора
Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.
Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.
Специальные программы облегчат расчет траснформатора.
Проще всего рассчитать параметры маломощного однофазного трансформатора. Для этого в специальной программе указываются следующие параметры:
Далее следует указать тип трансформатора (броневой или стержневой), вторичную мощность, значение магнитной индуктивности сердечника и плотности тока в обмотке.
Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.
Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.
Отличия первичной обмотки от вторичной
Определить тип обмотки можно по ее сопротивлению.
Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.
Главный визуальный критерий, при помощи которого можно определить тип обмотки, – толщина провода, припаянного к его выводам. Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.
Еще один верный признак, позволяющий узнать тип обмотки, – измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.
Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение – II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.
Какие функции выполняет трансформатор?
Трансформаторы широко используются в зарядных устройствах.
Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.
В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.
Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.
В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.
Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.
Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.
Заключение по теме
Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.
Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.
Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.
В чем отличие первичной обмотки от вторичной
Выводы вторичной обмотки трансформатора
Виден толстый медный провод, припаянный к контактам.
Выводы первичной обмотки трансформатора: виден более тонкий медный провод, припаянный к контактам
Классический пример. Есть трансформатор без опознавательных знаков и четыре вывода из него с подпаянными медными проводами. Видно, что к одним выводам идёт более толстый медный провод, а к другим — более тонкий. Опытный радиолюбитель сразу скажет, что тонкий провод — это первичная обмотка, а толстый — вторичная. Так и есть. Измерим сопротивление обмоток: более тонкий покажет 62 Ома, а толстый — 0, 8 Ом.
С полной уверенностью можно утверждать, что первичная обмотка трансформатора, которая включается в сеть 220, намотана более тонким медным проводом. Верные признаки первичной обмотки: выполнена более тонким проводом, чем другие обмотки и имеет сопротивление в несколько десятком Ом. На принципиальных схемах обозначается римской цифрой I.
Вторичные обмотки выполняются более толстым медным проводом по сравнению с первичной и имеют сопротивление буквально до одного Ома. На принципиальных схемах обозначается римской цифрой II.
Первичная обмотка всегда одна, а вторичных может быть несколько. Они обозначаются римскими цифрами III, IV, V, VI и т.д. Причём, все они называются вторичными, а не третичными, четвертичными, пятеричными.
Первичная обмотка трансформатора – это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.
На самодельных трансформаторах нет обозначений первичной обмотки.
Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.
Типы трансформаторных обмоток
В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:
У трансформаторов есть шесть основных типов обмотки.
На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения – строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита – X, Y, Z для входящего напряжения и x, y, z для выходящего.
Различают обмотки и по назначению:
Автоматизированный расчет намотки трансформатора
Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.
Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.
Специальные программы облегчат расчет траснформатора.
Проще всего рассчитать параметры маломощного однофазного трансформатора. Для этого в специальной программе указываются следующие параметры:
Далее следует указать тип трансформатора (броневой или стержневой), вторичную мощность, значение магнитной индуктивности сердечника и плотности тока в обмотке.
Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.
Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.
Отличия первичной обмотки от вторичной
Определить тип обмотки можно по ее сопротивлению.
Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.
Главный визуальный критерий, при помощи которого можно определить тип обмотки, – толщина провода, припаянного к его выводам. Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.
Еще один верный признак, позволяющий узнать тип обмотки, – измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.
Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение – II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.
Какие функции выполняет трансформатор?
Трансформаторы широко используются в зарядных устройствах.
Главная функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.
В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.
Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета. В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью. Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.
В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.
Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.
Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.
Заключение по теме
Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.
Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.
Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.
Первичной обмоткой трансформатора называется обмотка, к которой может подводиться электрическая энергия. Например, первичной обмоткой трансформатора является та обмотка трансформатора индукционной катушки, к которой подводится электрическая энергия, которая подлежит преобразованию.
Первичная обмотка трансформатора выполняется из нескольких секций, которые позволяют включать с различным напряжением трансформатор в сеть. В жизни и на практике очень часто приходиться иметь дело с подобными устройствами.
В течение дня напряжение сети довольно часто колеблется под воздействием изменения нагрузки. Если в дневное время оно бывает стандартным (220 В), то вечером может падать до 180-190 В, поздней ночью и ранним утром напряжение может повыситься до 230-240 В. В подобных случаях первичную обмотку трансформатора разбивают на еще более мелкие секции (делаются отводы, рассчитанные на меняющееся напряжение от 90 и до 240 В). Такая мелкосекционированная первичная обмотка трансформатора дает возможность подключить к сети то количество витков, которое соответствует фактическому напряжению, и тем самым обеспечивает нормальное напряжение для работы какого-либо устройства.
Трансформаторы тока по способу исполнения первичной обмотки можно подразделить на две группы:
— одновитковые или стержневые;
— многовитковые.
Первичная обмотка трансформатора тока включена в цепь последовательно. При этом вторичная обмотка, находясь замкнутой на отдельной вторичной цепи, отдаёт в неё ток, который будет пропорционален току первичному.
В трансформаторах тока с высоким напряжением первичная обмотка трансформатора изолирована от вторичной обмотки (и от земли изолирована также) на полное рабочее напряжение. Потенциал вторичной обмотки в эксплуатации близок к потенциалу земли, и один конец такой обмотки обычно заземляется.
Начало и конец первичной обмотки на практике обозначают буквами «А» и «X». А вторичная обмотка с меньшим количеством числа витков замыкается на устройство с большим сопротивлением. Начало и конец вторичной обмотки, соответственно, обозначают маленькими буквами «а» и «х». Вторичное напряжение по отношению к измерительному прибору обязано совпадать по фазе с первичным — это достигается за счет соответствующего соединения вторичной обмотки с прибором. Поэтому такой ток в цепи вторичной обмотки трансформатора напряжения крайне мал, и режим его работы близок к режиму холостого хода силового трансформатора.
Вторичная обмотка трансформатора
Вторичная обмотка трансформатора соединяет с потребителем энергии
Трансформатор представляет собой электромагнитное устройство, состоящее из первичной и вторичной обмотки трансформатора и магнитопровода. Трансформатор предназначен для преобразования тока (напряжения) посредством электромагнитной индукции.
Трансформаторы применяются для передачи электроэнергии на большое расстояние, для её распределения и в сигнализационных, выпрямительных и усилительных устройствах. Первичной называется обмотка, к которой присоединён источник энергии, а обмотка, соединённая с потребителем энергии, называется вторичной обмоткой трансформатора.
Конструкция трансформаторов полностью зависит от назначения. Бывают:
Все виды трансформаторов подразделяются:
Когда во вторичной обмотке трансформатора, по сравнению с первичной, в 3 раза больше витков, то при помощи магнитного поля первичной обмотки при пересечении витков вторичных обмоток в ней создаётся напряжение в 3 раза больше.
Если применить обратное соотношение витков, то можно получить пониженное напряжение. Отношение числа витков в первичной обмотке к количеству витков во вторичной обмотке трансформатора называется коэффициентом трансформации.
Первичную и вторичную обмотки трансформатора наматывают виток к витку. Все слои отделены парафинированной бумагой, и проложен слой изолировочной ленты или лакоткани. Каркас для вторичной обмотки трансформатора и первичной изготавливается из плотного картона или специального электрокартона. Его размеры сравнимы с размером сердечника трансформатора.
6. Отношение ЭДС Eвн обмотки высшего напряжения к ЭДС Енн обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации

Коэффициент n всегда больше единицы.
Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, тока, сопротивления и т. д.).
Дата добавления: 2015-05-07 ; Просмотров: 3275 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Трансформатор
Слово «трансформатор» образуется от английского слова «transform» — преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством — преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.
Трансформатор напряжения
Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.
Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода
а с другой катушки два красных провода
Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого
Ничего сложного, правда ведь?
Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.
Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.
Обмотки трансформатора
Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.
Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.
У самого простого однофазного трансформатора можно увидеть две такие обмотки.
Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют «первичка». Обмотка, с которой уже снимают напряжение называется вторичной или «вторичка».
Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.
I/P: 220М50Hz (RED-RED) — это говорит нам о том, что два красных провода — это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P — значит InPut, что в переводе «входной».
O/P: 12V 0,4A (BLACK, BLACK) — вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор — это 0,4 Ампера или 400 мА.
Как работает трансформатор
Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.
Формула трансформатора
Главная формула трансформатора выглядит так.
U2 — напряжение на вторичной обмотке
U1 — напряжение на первичной обмотке
N1 — количество витков первичной обмотки
N2 — количество витков вторичной обмотки
k — коэффициент трансформации
В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:
Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.
Типы трансформаторов по конструкции
Однофазные трансформаторы
Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.
В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.
На схемах однофазный трансформатор обозначается так:
Первичная обмотка слева, а вторичная — справа.
Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:
Трехфазные трансформаторы
Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.
На схемах трехфазные трансформаторы обозначаются вот так:
Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки — маленькими буквами.
Здесь мы видим три типа соединения обмоток (слева-направо)
В 90% случаев используется именно звезда-звезда.
Типы трансформаторов по напряжению
Понижающий трансформатор
Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.
Повышающий трансформатор
Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.
Разделительный или развязывающий трансформатор
Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.
Согласующий трансформатор
Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.
Работа понижающего трансформатора на практике
Итак, имеем простой однофазный понижающий трансформатор.
Именно на нем мы будем проводить различные опыты.
Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.
Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.
Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.
Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.
Как проверить трансформатор
Как проверить на короткое замыкание обмоток
Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.
Проверка на обрыв обмоток
При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.
Таким же образом проверяем и вторичную обмотку.
Отсюда делаем вывод, что наш трансформатор жив и здоров.
Похожие статьи по теме «трансформатор»

























