какая концентрация углерода в перлите
ПЕРЛИТ
ПЕРЛИТ – структурная составляющая в углеродистых и легированных сталях и чугунах, возникающая при эвтектоидном превращении (см МЕТАЛЛОВЕДЕНИЕ ФИЗИЧЕСКОЕ) согласно диаграмме состояния железо – углерод. Перлит состоит из двух фаз – феррита и цементита, феррит – железо с очень малым количеством углерода (до 0,03%), а цементит – химическое соединение Fe3C, содержащее по массе 6,67%С. Среднее содержание углерода в перлите – 0,8%С, а сталь с целиком перлитной структурой, содержащая 0,8% углерода, называется эвтектоидной. При содержании углерода менее 0,8% сталь состоит из перлита и феррита, если углерода более 0,8% – из перлита и, в соответствии с диаграммой состояния железо – углерод.
При металлографическом исследовании изучается срез поверхности металла (металлографический шлиф), который подвергается шлифовке, полировке и химическому травлению специально подобранными реактивами. Химическая активность цементита больше, чем феррита, поэтому под микроскопом сильно протравленные участки цементита имеют черный цвет, а участки феррита сохраняют светлый цвет.
Перлит обычно имеет пластинчатую структуру, каждое зерно перлита состоит из параллельных пластинок феррита и цементита шириной в десятые доли мкм. Длина пластинок соответствует размеру зерен металла, и пластинки идут от одной границы зерна к другой. Если такая объемная пластинчатая структура пересекается плоскостью шлифа и подвергается травлению, то на ее поверхности возникает полосчатая структура из светлых полосок феррита и тонких полосок цементита. При различных термообработках ширина полосок (межпластиночное расстояние) может быть различным, ширина полосок цементита в 7 раз меньше, чем полосок феррита. При длительной выдержке при высоких температурах зерна феррита и цементита могут переходить из пластинчатой формы в округлую, и на металлографическом шлифе наблюдаются мелкие, темные, округлые зерна цементита на фоне крупных зерен феррита.
Перлит – продукт эвтектоидного превращения высокотемпературной фазы – аустенита при термической обработке сплавов. Аустенит при охлаждении при температуре 723° С распадается на феррит и цементит. Перлитное превращение всегда начинается на границах зерен аустенита. Чтобы возникли частицы новой фазы, нужно создать зоны пониженной и повышенной концентрации углерода. Исходный аустенит содержит 0,8% углерода, а в результате превращения образуется феррит, практически не содержащий углерода, и цементит с 6,67% углерода. Для объяснения этих процессов предложен флуктуационный механизм, согласно которому атомы углерода с большой диффузионной подвижностью при высоких температурах, могут создавать зоны с повышенной концентрацией углерода. Этот процесс является энергетически выгодным, и зародыш цементита вырастает до критического размера.
Если содержание углерода в стали не равно 0,8%, то из аустенита при охлаждении выделяется не только перлит, но и другие фазы. Если углерода менее 0,8%, выделяется избыточное количество феррита и сталь приобретает феррито-перлитную структуру, а при содержании углерода более 0,8% у стали перлито-цементитная структура.
Диаграмма железо-углерод
Диаграмма железо-углерод – это графическое отображение структуры сплавов, состоящих только из железа и углерода, в зависимости от исходной средней концентрации углерода и текущей температуры сплава. Диаграмма железо-углерод позволяет понять процессы, происходящие при термообработке стали.
Диаграмма железо-углерод (железо-цементит). Упрощенная
Структуры на диаграмме железо-углерод
Напомним о 2 кристаллических формах железа:
Полиморфное превращение одной формы в другую при проведении термообработки сталей происходит при прохождении сплавами линии GSK.
Выделим 4 фазы в системе железо-углерод:
В зависимости от условий образования выделяют:
Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:
Структура перлита. Ф — феррит, Ц — цементит
Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.
Структура ледебурита. Ц — цементит, А — аустенит.
Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.
При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита.
Некоторые элементы диаграммы железо-углерод
Выделим несколько границ на диаграмме железо-углерод:
Отметим несколько важных точек на диаграмме:
Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:
Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:
Чтение диаграммы железо-углерод
Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.
Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.
Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (
Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (
Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:
Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.
По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.
Классификация железоуглеродистых сплавов
Классификация железоуглеродистых сплавов в зависимости от концентрации углерода в сплаве:
Чугуны же выделяет наличие ледебурита, придающего им хрупкость. Поэтому чугуны не могут подвергаться ковке. Зато обладают лучшими литейными свойствами (чем стали), обусловленными наличием легкоплавкого ледебурита.
Термообработка сталей в ООО КВАДРО
Наше предприятие уже почти четверть века производит на заказ термообработку металлов в Санкт-Петербурге.
Основные виды термической обработки металлов, осуществляемые на нашем предприятии на заказ:
При каком содержании углерода в стали возможна структура перлита
Перлит структурная составляющая железоуглеродистых сплавов
Состав
Перлит представляет собой механическую смесь феррита и цементита, образующуюся при эвтектоидном разложении медленно охлажденного аустенита. Концентрация углерода в перлите составляет 0,80%.
Твердость перлита HB 180÷220.Сталь, содержащая 0,80% C, имеет чистую перлитную структуру.
Редебрит представляет собой механическую смесь аустенита и цементита, образующуюся при кристаллизации жидких сплавов, содержащих 4,3% C. Это превращение также охватывает аустенит, который входит в состав редебрита, поскольку аустенит подвергается перлиту при температуре 723°C. следовательно, при температуре 723°или ниже красный Бритт является не смесью аустенита и цементита, а смесью перлита и цементита.
- Основные компоненты перлита: диоксид кремния SiO2 (65-75%), оксид алюминия AI2O3 (10-16%), оксид калия K2O (до 5%), оксид натрия Na2O (до 4%), оксид железа Fe2O3 (до 3 фракций)%, оксид магния (до 1% от фракционирования), оксид кальция CaO (до 2%), вода (H2O) (2
6).Могут присутствовать и другие примеси.
Перлит характеризуется небольшой концентрической оболочечной структурой (перлитная структура), в результате чего образуется круглое ядро (Жемчужина), напоминающее жемчужину с характерным блеском.
Среди других вулканических пород перлит отличается наличием в составе воды(более 1%).
Пористость 8-40%.Перлит может иметь самые разные оттенки: черный, зеленый, красно-коричневый, коричневый, белый. Типы перлита: Обсидиан (содержит примеси обсидиана), сферолиты (содержит примеси полевого шпата), смолистый камень (однородный состав), стекловидный и так далее. Перлит, в виде массивной, полосатой, угловатой ректификационной породы, пемзы, отличается особенностями фактуры.
Вспученный перлит-это рыхлый, пористый, рыхлый, легкий и прочный материал.
Огнестойкость: рабочая температура-минус 200-900°С. Смогите поглотить до 400% из жидкости своего собственного веса: термоизоляция и ядровая изоляция, максимум absorbency. It это биологически resistant. It не подвержен разложению и гниению под воздействием микроорганизмов и не является благоприятной средой обитания для насекомых и грызунов.
Химически инертен: нейтрален к щелочным и слабым кислотам. Перлит является экологически чистым, нетоксичным и стерильным материалом и не содержит тяжелых металлов.
Перлит можно использовать естественным способом (в строительстве), но чаще используется вспученный перлит. Применение вспученного перлита в строительстве позволяет повысить теплоизоляцию и звукоизоляцию строящихся конструкций и характеристики противопожарной защиты, при этом значительно снижаются масса и объем конструкций.
Свойства
Вспученный перлит применяют однократно (в качестве песка, гравия, пола, стен, утеплителя кровли и звукоизоляционной засыпки) или в смеси с другими строительными материалами (строительные теплоизоляционные изделия, теплые штукатурки, легкий строительный раствор, наполнитель линолеума, в качестве компонента при изготовлении краски, сухой).
Перлит также является абразивом.
Строительство спортивной площадки. При строительстве спортивного поля или поля для гольфа перлит добавляют в почву до того, как его выпасают. По этой причине в сезон дождей поля не затопляются, они не выветриваются, а в период засухи трава зарастает и не высыхает.
Нефтеперерабатывающая и газовая промышленность.
Перлит эффективно используется в качестве адсорбента в масле или мазуте spills. At в то же время нефтепродукты легко выгорают из перлита, который их поглотил.
Перлит добавляют в цементный раствор с целью закрепления нефтяных и газовых скважин.
Например: фильтр для очистки вина, сахарного сиропа, пива, фруктового сока, растительного масла.
Экология: очистка поверхности водных объектов и земель от химических и промышленных загрязнений, радионуклидов.
Медицинская промышленность (для фильтрации лекарственных средств).
Стекло, металлургия, химическая промышленность, сельское хозяйство (агропарит).
Мелкий перлитовый песок очень пылен, что отрицательно сказывается на легких и глазах. Поэтому перед применением необходимо смочить перлит спреем и работать с респиратором или маской. Если пыль попадает в глаза, ее тщательно промывают водой.
Кроме того, увлажненный перлит поднимается в воде во время полива и не притягивает к себе всю влагу.
Перлит продается не во всех магазинах. Возможность продажи замаскированных под перлит искусственных материалов, не обладающих свойствами.
Большие потребности (садоводство) могут быть дорогостоящими. Есть более дешевые и бесплатные альтернативы.
Применение перлита
Белый цвет перлита затрудняет диагностику почвенных вредителей (корнеядных насекомых, мучнистых червецов, личинок грибов).
РН перлита нейтральный. Когда растение выращивают в чистом перлите и орошают жесткой водой, рН субстрата может смещаться в щелочную сторону, что тормозит рост растения и препятствует использованию питательных веществ.
Поскольку он имеет положительный заряд, он не может удерживать положительный ион удобрения и не участвует в процессе ионного обмена.
Вермикулит, кирпичная крошка, мелкий керамзит, полистирольная крошка, песок (последние 2 компонента придают субстрату пористость и рыхлость, но не удерживают воду).
Недостатки
Перлит часто используется в сочетании с вермикулитом. Преимущества перлита для вермикулита: капиллярное распределение влаги облегчает полив растений и быстрее высыхает между поливами.
Преимущества вермикулита перед перлитом: меньшая усадка при шлифовании(меньшее слеживание), отсутствие пустот при заполнении, небольшие полирующие свойства (не вызывает механических повреждений корней), низкая гигроскопичность, ионообменная способность.
Основное количество добываемого перлита используется в производстве вспученного перлита, который используется в различных отраслях промышленности и сельского хозяйства.
Благодаря таким свойствам, как негорючесть, низкая теплопроводность и малый удельный вес, вспучивающийся перлит широко применяется в производстве звукоизоляционных материалов и изоляционных материалов в строительстве.
В зависимости от марки из вспученного перлитового песка получают легкие бетоны и растворы различного назначения, керамические и битумные перлитные изделия, перлитные изделия на основе синтетических связующих, гипсовые и силикатные перлитовые материалы, штукатурные растворы и широкий спектр изоляционных материалов.
Процесс расширения происходит за счет присутствия 2-6% объединенной воды в природном перлите.
Реферат на тему | На заказ | Образец и пример |
Перлит структурная составляющая железоуглеродистых сплавов | В настоящее время в России только 20% производимого вспученного перлита используется для строительства. | Перлит практически не используется для теплоизоляции стен, крыш и потолков. |
Когда этот камень быстро нагревается до более чем 870°C, он лопается, как «попкорн», поскольку связанная вода испаряется, создавая бесчисленные крошечные пузырьки в размягченном стекле particles. It это такие маленькие стекловидные пузырьки, которые обеспечивают такой удивительный легкий вес и другие превосходные физические свойства, как надутый перлит.
Изменение структуры в зависимости от содержания углерода
Увеличение содержания углерода вследствие его незначительной растворимости в феррите вызывает появление второй фазы — цементита третичного. При содержании углерода до 0,025 % структурно свободный цементитвыделяется, главным образом, по границам зерен феррита. Это существеннопонижает пластичность и вязкость стали, особенно, если цементит располагается цепочками или образует сетку вокруг зерен феррита.
При увеличении содержания углерода выше 0,025% в структуре стали образуется перлит; одновременно еще до 0,10 — 0,15% С в стали появляютсявключения структурно свободного (третичного) цементита. С дальнейшимповышением содержания углерода третичный цементит входит в состав перлита.
По микроструктуре стали делятся на доэвтектоидные, эвтектоидные и заэвтектоидные.
Доэвтектоидные стали содержат более 0,02%, но менее 0,8% углерода. Структура доэвтектоидных сталей состоит из феррита и перлита (выделением из феррита избыточного третичного цементита пренебрегаем). С увеличением содержания углерода количество феррита в доэвтектоидных сталях уменьшается, а перлита — увеличивается (рис. 3).
При содержании в стали 0,8% углерода количество перлита равно 100%.
На рисунке 10 показана микроструктура доэвтектоидной стали с различным содержанием углерода. Отчетливо видно, что содержание перлита (темная составляющая) увеличивается с повышением содержания углерода.
Структура эвтектоидной стали (0,8 С) состоит из одного перлита, всё поле заполнено перлитом.
Структура заэвтектоидных сталей при комнатной температуре состоит из перлита и вторичного цементита, причем цементит может располагаться в виде сетки, зёрен или игл. В структуре заэвтектоидных сталей вместо обычного перлита может быть зернистый перлит, который получают после специальной термообработки.Образуется у стали У9-У13 из аустенита при охлаждении. Сетка цементита начинает образовываться на линии ES, перлит– на линии PSK. Максимальное количество структурно свободного цементита (
20 %) будет в сплаве с содержанием углерода 2,14%.
Рис. 4. Равновесная диаграмма
Последовательность образования равновесной структуры
На примере сплава, содержащего 0,5% С, рассмотрим последовательность протекания фазовых превращений, образующих в конечном счете равновесную структуру, предполагая его охлаждение с температур жидкого состояния равновесным. Схема кривой охлаждения показана на рис. 4.1.
Итак, до температуры 1 следует простое охлаждение жидкого сплава.
От точки 1, лежащей на линии ликвидуса, начинается образование кристаллов аустенита. Их количество растет и при температуре в точке 2 процесс кристаллизации заканчивается. Далее последует простое охлаждение зерен аустенита.
Рис. 4.1. Схема кривой охлаждения сплава (0,5% С) и образования его равновесной ферритно-перлитной структуры
По достижении температуры точки 3 (рис. 4.1) посредством перестройки ГЦК решетки в ОЦК решетку аустенит начинает превращаться в феррит. Это происходит практически одновременно в каждом зерне аустенита. Причем, концентрация углерода в образующемся феррите, в соответствии с его природой, определяется кривой PG диаграммы состояния. Поскольку в интервале температур 3-4 в аустените появляется и количественно растет ферритная составляющая с явно меньшим содержанием растворенного углерода, чем в анализируемом сплаве, концентрация углерода в убывающем количественно аустените увеличивается. Ее изменения описываются кривой GS диаграммы (рис. 4.1).
В итоге, при температуре точки 4 в пределах границ каждого первичного зерна аустенита в равновесии окажутся феррит состава точки P и остаток аустенита состава точки S.
Последующий отвод тепла нарушит устойчивость остатка аустенита и он претерпит диффузионное эвтектоидное превращение в перлит по схеме:
Процесс совершается с выделением тепловой энергии и поэтому протекает на отрезке изотермы 4-4′ (рис. 4.1). Охлаждение ниже точки 4′ практически не изменит образовавшейся структуры. Она состоит из феррита и перлита.
Подобная структура типична для любого доэвтектоидного сплава. Причем, по мере увеличения концентрации углерода монотонно растет количество перлитной составляющей и убывает количество ферритной составляющей.
В заэвтектоидных сплавах их равновесное охлаждение ниже сольвусаES сопровождается образованием вторичного цементита, образующего оболочку вокруг первичного аустенитного зерна. Затем аустенит превращается в перлит. Поэтому любой заэвтектоидный сплав со структурой из зерен перлита, окаймленных оболочкой вторичного цементита.
1. Зарисовать диаграмму состояния железо-цементит. Построить кривые охлаждения для доэвтектоидной, эвтектоидной и заэвтектоидной стали. Описать, как формируется структура сталей при охлаждении из жидкого состояния до комнатной температуры.
2. С помощью микроскопа изучить микроструктуру доэвтектоидных, эвтектоидных и заэвтектоидных сталей в равновесном состоянии. Зарисовать наблюдаемые в микроскоп структуры, определить количество присутствующих фаз и структурных составляющих в процентах, сравнить микроструктуры углеродистой и легированной хромом сталей с одинаковым содержанием углерода и дать описание.
3. Освоить метод приближенного определения углерода в стали по микроструктуре.
Контрольные задания
1. Зарисовать и описать микроструктуру отожженной стали марки 50 (0,5%С). Определить количественное соотношение и состав фаз при температуре 730 °С.
2. Зарисовать и описать микроструктуру отожженной стали.
3. Зарисовать и описать микроструктуру стали марки У12 (1,2%С). Определить количественное соотношение и состав фаз при нормальной температуре.
5. Зарисовать и описать микроструктуру технического железа с содержанием 0,01% С. Определить количественное соотношение и состав фаз при нормальной температуре.
6. Зарисовать и описать микроструктуру стали с содержанием углерода 0,02%. Определить количественное соотношение и состав фаз при температуре 727°С.
8. Структура стали состоит из одного перлита. Зарисовать микроструктуру стали. Определить количество цементита.
9. Сталь марки У10 (1,0%С) медленно охлаждалась с температуры на 50 °С выше линии SE диаграммы Fe-Fe3C. Зарисовать и описать микроструктуру стали. Определить количество цементита в стали при комнатной температуре.
10. Зарисовать и описать микроструктуру стали марки 70 (0,7% С). Определить количество перлита, феррита и цементита в стали.
12. Структура заэвтектоидной стали марки У13 (1,3% С) состоит из перлита и вторичного цементита. Зарисовать указанную структуру. Определить количество цементита в ней.
13. В структуре стали содержится 12% цементита. Определить содержание углерода, зарисовать микроструктуру стали.
14. В структуре стали содержится 5,25% цементита. Определить содержание углерода, зарисовать микроструктуру стали.
Вопросы для повторения
1. Что такое феррит, аустенит, цементит, перлит?
2. Сколько углерода может раствориться в феррите?
3. Как выглядят феррит, цементит и перлит при рассмотрении в микроскоп?
4. В структуре, каких сталей присутствует третичный цементит, какова его роль в формировании свойств стали?
5. В структуре, каких сталей присутствует вторичный цементит?
6. При каких условиях вторичный цементит в заэвтектоидных сталях образует сплошную прослойку (сетку) по границам зерен перлита, и как это отражается на свойствах стали?
7. При каком содержании углерода в структуре углеродистой стали появляется перлит?
8. Какие структурные составляющие содержатся в структуре железоуглеродистых сплавов с содержанием углерода до 0,02%?
9. Как изменяется структура доэвтектоидных сталей с увеличением содержания углерода?
10. Как по количеству перлита определить приближенно содержание углерода в стали?
11. Какие структурные составляющие присутствуют в структуре заэвтектоидных сталей?
12. Как и почему изменяются свойства углеродистых сталей в равновесном состоянии с увеличением содержания углерода?
1.Арзамасов Б.И. Материаловедение технология конструкционных материалов. М: Издательский центр «Академия», 2007.
2. Сироткин О.С. Теоретические основы общего материаловедения, Казань КГЭУ, 2007, 348с.
3. Лабораторный практикум по материаловедению. М.: Изд-во МЭИ, 1998.
Метастабильная диаграмма состояния железо-углерод – steel-guide
История открытия
Впервые на то, что в сплавах (сталях и чугунах) есть определенные (особые) точки, указал великий металлург и изобретатель – Дмитрий Константинович Чернов (1868 год). Именно он сделал важное открытие о полиморфных превращениях и является одним из создателей диаграммы состояния железо-углерод. По мнению Чернова, положение этих точек на диаграмме имеет прямую зависимость от процентного содержания углерода.
И что самое интересное, именно с момента этого открытия и начинает свою жизнь такая наука, как металлография.
Диаграмма сплавов железа с углеродом является результатом кропотливого труда ученных нескольких стран мира. Все буквенные обозначения главных точек и фаз в диаграмме являются интернациональными.
Понятие диаграммы
Графическое изображение процессов, происходящих в сплаве при изменении температурного режима, концентрации веществ, давления, называется диаграммой состояния. Она позволяет объемно и наглядно увидеть все превращения, происходящие в сплавах.
Структуры на диаграмме железо-углерод
Напомним о 2 кристаллических формах железа:
Кристаллическая решетка железа
Полиморфное превращение одной формы в другую при проведении термообработки сталей происходит при прохождении сплавами линии GSK.
Выделим 4 фазы в системе железо-углерод:
В зависимости от условий образования выделяют:
Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:
Структура перлита. Ф — феррит, Ц — цементит
Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.
Структура ледебурита. Ц — цементит, А — аустенит.
Повторяясь, напомним, что при прохождении сплавов ниже линии PSK (727°С) аустенит, входящий в состав ледебурита, претерпевает перлитное превращение, разделяясь на феррит и цементит. Ледебурит тверд и хрупок.
При комнатной температуре железоуглеродистые сплавы могут иметь различную структуру, а значит и свойства, хотя и состоят всегда всего из 2 фаз: феррита и цементита.
Значение линий диаграммы состояния системы железо-углерод
Всякая диаграмма состояния показывает условия равновесного сосуществования фаз во взятой системе компонентов.
Полное физико-химическое равновесие между фазами может быть достигнуто только в специальных лабораторных условиях, а на практике некоторым приближением к этому состоянию может быть случай чрезвычайно медленного охлаждения или нагрева сплава с весьма длительными выдержками во времени при любых искомых температурах.
Некоторые элементы диаграммы железо-углерод
Выделим несколько границ на диаграмме железо-углерод:
Отметим несколько важных точек на диаграмме:
Часто значения температур, при которых происходят структурные изменения конкретного сплава обозначают буквами A:
Поскольку температуры фазовых переходов при нагреве и охлаждении слегка отличаются, то часто вводят дополнительные буквенные обозначения:
например, Ac1 или Ar1.
Применение диаграммы состояния железоуглеродистых сплавов
Диаграмму состояния сплавов системы железо—цементит применяют для определения режима термической обработки сплава, температуры нагрева металла под ковку и температурного предела ковки, а также температуры плавления, что необходимо для назначения режима заливки жидкого сплава в формы.
Термическая обработка производится путем нагрева металлических сплавов до определенных температур, выдержки при этих температурах и последующего быстрого или медленного охлаждения с целью изменения свойств сплава в желаемом направлении.
Термическая обработка железоуглеродистых сплавов имеет ряд разновидностей, основанных на том, что неустойчивая при низких температурах структура аустенита в зависимости от скорости охлаждения сплава превращается в структуры, обладающие различными свойствами. Продуктами распада аустенита являются мартенсит, троостит, сорбит и перлит.
Мартенсит — продукт закалки аустенита и его превращения в феррит без выделения углерода из раствора. Поэтому мартенсит — это сильно пересыщенное углеродом α-железо с кпженной кристаллической решеткой. Эго обусловливает высокую его твердость (НВ 600—700) и прочность, повышенную и ость и наличие внутренних напряжений. Эта структура образуется при больших скоростях охлаждения — закалки (180 ÷ сек для углеродистой стали). Мартенсит по своей природе неустойчив и при нагреве до температуры свыше 70° стремится перейти в другие структуры.
Трооститом называется механическая смесь феррита цементита очень высокой степени дисперсности. Твердость троостита НВ 350÷500. Эта структура образуется при скорости закалки углеродистой стали около 80°/сек. Игольчатый троостит иногда называют бейнитом.
Сорбит — это более грубая механическая смесь зерен феррита и цементита, однако достаточно дисперсная. Она с трудом различается под обычным микроскопом. Твердость сорбита 250÷350. Эта структура образуется при скоростях закалки углеродистой стали менее 50°/сек. По сравнению с трооститом copбит имеет более высокую вязкость, а по сравнению с перлитом — большую твердость.
Перлит представляет собой более или менее грубую механическую смесь феррита и цементита. Перлит образуется при малых Скоростях охлаждения стали, нагретой до аустенитного состояния.
Троостит, сорбит и перлит можно получить путем отпуска мартенсита при возрастающих температурах отпуска. В этом случае они имеют отличные, часто более высокие механические свойства, чем при охлаждении аустенита с разными скоростями.
Таким образом, путем изменения режима термической обработки можно получать различные физико-механические свойства и структуры стали. К операциям термической обработки относятся отжиг, нормализация, закалка и отпуск.
Отжиг — фазовая перекристаллизация — заключается в нагреве доэвтектоидной стали выше линии А3, а заэвтектоидной — выше линии Аст с последующим медленным охлаждением вместе с печью. Если нагреть сталь выше А1, но ниже, А3 (или Аст), то полной перекристаллизации не произойдет. Tal кая термическая обработка называется неполным отжигом. При отжиге состояние стали приближается к равновесному. Поэтому структура отожженной стали состоит либо из феррита и перлита (доэвтектоидные стали), либо из перлита и вторичного цементита (заэвтектоидные стали).
Температурные пределы полного отжига, неполного отжига, высокого отпуска и нормализации, нанесенные на участке диаграммы состояния железо — цементит
Отжиг снижает твердость и повышает вязкость стали, улучшает ее обрабатываемость, снимает внутренние напряжения, а также устраняет структурную неоднородность и стабилизирует физические свойства.
Нормализация отличается от отжига повышенной скоростью охлаждения (на спокойном или движущемся воздухе). Нормализацию применяют для размельчения зерна металла и повышения его прочности.
Закалкой называется нагрев стали выше критической точки А3 (рис. 9) с последующим быстрым охлаждением в воде, масле или других охлаждающих средах. Обычно цель закалки — получение мартенситной структуры, подвергаемой затем отпуску. Неполная закалка происходит в случае, если доэвтектоидная сталь была нагрета до температуры, лежащей выше точки Аи но ниже точки А3. Феррит, содержащийся в такой стали наряду с аустенитом, закалки естественно не принимает. Заэвтектоидные стали закаливают с температур выше А1, но ниже Асm, так как нецелеобразно растворять при нагреве твердые включения вторичного цементита.
Температурные пределы ковки и горячей штамповки, нанесенные на участке диаграммы состояния железо — цементит.
При отпуске сталь нагревают до температуры ниже А1, выдерживают при этой температуре и медленно охлаждают вместе с печью. Низкий отпуск (175—250°) служит для повышения язкости стали при сохранении высокого предела прочности и твердости, уменьшения внутренних напряжений и получения более устойчивых структур. Высокий отпуск (до 700°) применяют для повышения пластичности и обрабатываемости стали и снижена прочности и твердости.
Ковку, горячую штамповку и прокатку стали производят при сравнительно высоких температурах. Нагрев стали производят до температуры на 100—150° ниже линии солидуса.
Окончание обработки стали давлением должно происходить и температурах, близких к А3, для доэвтектоидной стали, мшчание процесса при слишком низких температурах ведет к рочечности структуры стали, к снижению ее пластичности, копчание процесса при слишком высоких температурах ведет росту зерна стали (перегрев) и повышению ее хрупкости. Перерой можно исправить термической обработкой (отжигом, нормализацией).
При нагреве стали до температуры, близкой к линии солидуса АЕ, происходит окисление металла вдоль границ зерен, рпультате чего связь между последними нарушается и механическая прочность катастрофически падает. Такое явление называют пережогом, причем его нельзя исправить какой-либо следующей термической обработкой.
Классификация железоуглеродистых сплавов
Различные комбинации этих элементов приводят к получению большого количества сплавов, которые можно разделить на три большие группы:
К техническому железу относят материалы, в которых содержится менее 0,02% углерода. К сталям относят, материалы, в которых углерод находится в пределах от 0,02 до 2,14%. И в группу чугунов входят материалы, количество углерода в которых превышает 2,14%.
Фазы диаграммы железо-углерод
В системе железо — углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.
Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях[источник не указан 1441 день] с образованием однородной жидкой фазы.
Феррит — твёрдый раствор внедрения углерода в α-железе с объёмно-центрированной кубической решёткой.
Феррит имеет переменную, зависящую от температуры предельную растворимость углерода: минимальную — 0,006 % при комнатной температуре (точка Q), максимальную — 0,02 % при температуре 700 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрические эквивалентно) на середине рёбер куба, а также в дефектах решетки.
При температуре выше 1392 °C существует высокотемпературный феррит с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка H).
Свойства феррита близки к свойствам чистого железа. Он мягок (твёрдость по Бринеллю — 130 НВ) и пластичен, ферромагнитен (при отсутствии углерода) до точки Кюри — 770 °C.
Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с гранецентрированной кубической решёткой.
Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит — метастабильная фаза и при длительном нагреве самопроизвольно разлагается с выделением графита.
В железоуглеродистых сплавах цементит как фаза может выделяться при различных условиях:
Эвтектический цементит наблюдается лишь в белых чугунах. Эвтектоидный цементит имеет пластинчатую форму и является составной частью перлита. Цементит может при специальном сфероидизируюшем отжиге или закалке с высоким отпуском выделяться в виде мелких сфер. Влияние на механические свойства сплавов оказывает форма, размер, количество и расположение включений цементита, что позволяет на практике для каждого конкретного применения сплава добиваться оптимального сочетания твёрдости, прочности, стойкости к хрупкому разрушению и т. п. [5]
Графит — фаза состоящая только из углерода со слоистой гексагональной решёткой. Плотность графита (2,3 г/см3) намного меньше плотности всех остальных фаз (около 7,5—7,8 г/см3) и это затрудняет и замедляет его образование, что и приводит к выделению цементита при более быстром охлаждении. Образование графита уменьшает усадку при кристаллизации, графит выполняет роль смазки при трении, уменьшая износ, способствует рассеянию энергии вибраций.
Графит имеет форму крупных крабовидных (изогнутых пластинчатых) включений (обычный серый чугун) или сфер (высокопрочный чугун).
Графит обязательно присутствует в серых чугунах и их разновидности — высокопрочных чугунах. Графит присутствует также и в некоторых марках стали — в так называемых графитизированных сталях.
Чтение диаграммы железо-углерод
Состав сплава с данным исходным содержанием углерода при заданной температуре мы можем увидеть, двигаясь по вертикальной линии, соответствующей содержанию углерода в сплаве.
Рассмотрим, например, область AEC. С ней соседствуют области аустенита AESG и жидкой фазы. Сплавы в ней состоят из жидкой фазы и образующегося твердого аустенита. Как определить концентрацию углерода в разных фазах для данного сплава? Рассмотрим для примера сплав с исходной концентрацией углерода 2,5% при температуре 1250°С.
Проведем из этой точки графика «2,5% C – 1250°С» горизонтальную прямую. Пересечение этой прямой с линией AE, граничащей с областью аустенита, покажет концентрацию углерода в аустените при данной температуре (
Пересечение этой же горизонтальной прямой с линией AС, граничащей с областью жидкой фазы, покажет концентрацию углерода в жидкой фазе при данной температуре (
Именно таким образом мы можем определить концентрацию углерода в фазах любого сплава при заданной температуре:
Как видим, при концентрации углерода выше 2,14% насыщение охлаждаемого расплава углеродом всегда стремится к 4,3% (по линиям AC и DC) по мере приближения к температуре 1147°С (уровень ECF). Далее происходит превращение жидкости в ледебурит (эвтектику). Естественно, с этим же средним содержанием углерода.
По мере приближения к температуре 727°С (уровень PSK) концентрация углерода в аустените («свободном» и/или входящем в состав ледебурита) стремится к 0,8% (по линиям GS и ES). Далее происходит превращение аустенита в перлит (эвтектоид). Перлит, конечно, имеет среднее содержанием углерода 0,8%.
Свойства технически чистого железа
Магнитные свойства железа при различных температурах:
А температурную точку 768° С называют точкой магнитного превращения, или точкой Кюри.
Свойства технически чистого железа:
Компоненты в системе железо углерод
Аустенит
Атомы размещается в гранецентрированной ячейке. Твердость аустенита имеет твердость 200 … 250 единиц по Бринеллю. Кроме того у него хорошая пластичность и он отличается парамагнитностью.
Железо
Железо – это материал, относящийся к металлам. Его натуральный цвет – серебристо-серый. В чистом виде он очень пластичен. Его удельный вес составляет 7,86 г/куб. см. Температура плавления составляет 1539 °C. На практике чаще всего применяют техническое железо, в составе которого присутствуют следующие примеси – марганец, кремний и многие другие. Массовая доля примесей не превышает 0,1%.
У железа есть такое свойство как полиформизм. То есть, при одном и том же химическом составе, это вещество может иметь разную структуру кристаллической решетки и соответственно разные свойства. Модификации железа называют соответственно – Б, Г, Д. Все эти модификации существуют при разных условиях. Например, тип Б, может существовать только при температуре 911 °С. Тип Г может существовать в диапазоне от 911 до 1392 °С. Тип Д существует в диапазоне от 1392 до 1539 °С.
Каждый из типов обладает своей формой кристаллической решеткой, например, у типа Б решетка представляет собой куб, решетка типа Г имеет гранецентрированную кубическую форму. Решетка типа Д, имеет форму объемно центрированного куба.
Еще одно свойство состоит в том, что при температуре ниже 768 железо ферримагнитно, а при ее повышении это свойство теряется.
Точки полиморфной и магнитной трансформации называют критическими. На таблице они обозначены следующим образом – А2, А3, А4. Цифровые индексы показывают тип трансформации. Для более полного различия превращения железа из одного вида в другой к обозначению добавляют индексы с и r. Первый говорит о нагреве, второй об охлаждении.
Полиморфные модификации железа
При высоких параметрах пластичности, железо не обладает высокой твердостью, по шкале Бринелля она равна 80 единиц.
Железо имеет возможность образовывать твердые растворы. Их можно разделить на две группы – раствор замещения и внедрения. Первые состоят их железа и других металлов, вторые из железа и углерода, водорода и азота.
Углерод
Другой компонент системы – углерод. Это – неметалл и он обладает тремя модификациями в виде алмаза, графита и угля. Он плавится при 3500 °С.
Аллотропные модификации углерода
В сплаве железа, этот элемент находится в виде твердого раствора, его называют цементит или в виде графита. В таком виде он присутствует в сером чугуне. Графит, не отличается ни пластичностью, ни прочностью.
Цементит
Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Более точные исследования показали, что цементит может иметь переменную концентрацию углерода. Однако в дальнейшем, при разборе диаграммы состояния, сделаем допущение, что Fе3С имеет постоянный состав. Кристаллическая решетка цементита ромбическая, удельный вес 7,82 г/см3 (очень близок к удельному весу железа). При высоких температурах цементит диссоциирует, поэтому температура его плавления неясна и проставляется ориентировочно – 1260° С. Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 210° С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность.
Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: например, азотом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.
Если графит является стабильной фазой, то цементит – это метастабильная фаза. Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.
Первичный цементит
Металлурги разделяют три типа этого вещества – первичный, вторичный, третичный.
Читайте также: Тема 5. Горение веществ и материалов, общие сведения о горении, показатели пожаровзрывоопасности веществ и материалов
Первичный, получается из жидкости при закалке сплавов, которые содержат в себе 5,5% углерода. Первичный имеет форму в виде крупных пластин.
Вторичный
Этот элемент получается из аустенита при охлаждении последнего. На диаграмме этот процесс этот процесс можно видеть по диаграмме Fe – C. Цементит представлен в виде сетки, размещенной по границам зерен.
Третичный
Этот тип, является производным от феррита. Он имеет форму иголок.
В металлургии существуют и другие формы цементита, например, цементит Стеда и пр.
Другие структурные составляющие в системе железо углерод
Феррит
Так называют твердый раствор, при котором происходит внедрение углерода в железо.
Он растворяется с определенной переменностью, при нормальной (комнатной) температуре объем углерода лежит в пределах 0,006%, при 727 °С, то концентрация углерода составит 0,02%. По достижении 1392 °С образуется феррит.
Содержание углерода составит 0,1%. Его атомы размещаются в дефектных узлах решетки.
Феррит по своим параметрам близок к железу.
Другие структурные составляющие в системе «железо-углерод»
Кроме компонентов и фаз в системе сплавов «железо-углерод» присутствуют другие структурные составляющие — перлит и ледебурит.
Перлит
Перлит — эвтектоид, механическая смесь феррита и цементита, полученная в результате распада аустенита при охлаждении сплавов ниже 727° С. При медленном охлаждении перлит присутствует во всех сплавах с концентрацией углерода от 0,02 до 6,67%. Под микроскопом перлит может выглядеть либо как пластины, либо как зерна — зернистый перлит. Его вид, также как и механические свойства, зависит от скорости охлаждения сплава и вида его термической обработки.
Ледебурит в сталях
Ледебурит — эвтектика, механическая смесь аустенита и цементита, выделяющаяся из жидкости при охлаждении сплавов ниже 1147° С. Принципиальное отличие эвтектикой составляющей от эвтектоидной заключается в том, что первая выделяется из жидкости, а вторая из твердого раствора, в случае железоуглеродистых сплавов — из аустенита. Название данная структурная составляющая получила в честь имени немецкого ученого-металлурга Ледебура.
Чугуны
Сплавы на диаграмме железо-углерод, которые содержат углерода более, чем 2,14 %, называются чугунами. Они обладают высокой хрупкостью. Поперечное сечение такого чугуна имеет светлый тон, а потому его называют белым чугуном.
На диаграмме это точка С, называемая эвтектикой, с соответствующим содержанием углерода 4,3 %. При кристаллизации образуется смесь, состоящая из аустенита и цементита, в совокупности называемая ледебуритом. Фазовый состав постоянен.
При концентрации углерода менее 4,3 % (доэвтектический чугун) при кристаллизации выделяется аустенит из раствора. Далее из него выделяется Ц2. А при 727° С аустенит превращается в перлит. Структурное состояние такого чугуна следующее: крупные участки перлита темного тона.
В заэвтектическом белом чугуне (углерода более 4,3%) при охлаждении структурирование происходит с образованием кристаллов Ц1. Далее превращения осуществляются уже в твердом состоянии. Структура представляет собой ледебурит, который является фоном для полей перлита темного тона. А крупные пласты – это Ц1.
Выводы
Достичь абсолютного равновесия, как физического, так и химического, невозможно, кроме как в специальных лабораторных условиях.
На практике равновесие может быть приближено к абсолютному, но при определенных условиях: достаточно медленного повышения или понижения температуры сплава, который будет длительно выдерживаться по времени.