Современный железнодорожный транспорт не похож на тот, что был 100 лет назад. Скорость поездов с того времени увеличилась почти в 5 раз, а грузоподъемность в 8-10. Такие количественные изменения не могли не затронуть и рельсы, по которым перемещается локомотив. Их износостойкость, прочность и твердость также достигли нового уровня своих значений. В нынешнее время рельсовая сталь обладает целом рядом функциональных особенностей.
Химический состав
Рельсовые марки стали подразделяются на 2 группы в зависимости от вида применяемых раскислителей:
Химический состав рельсы полностью регулируется государственным стандартом ГОСТ Р 554 97- 2013. Согласно ему, помимо основного компонента железа, сплав должен включать в себя следующий набор элементов:
В зависимости от содержания серы и фосфора рельсовые стали подразделяются 2 сорта. Первый сорт имеет в своем составе меньший процент данных вредных примесей. Он более предпочтителен и применяется на более ответственных участках железнодорожного пути.
Механические свойства
Рельсовые марки стали отличаются повышенной стойкостью к циклическим нагрузкам. Их предел прочности в зависимости от марки колеблется в пределах от 800 до 1000 МПа. Деформироваться рельсовая сталь начинает в промежутке от 600 до 810 МПа. Опять же, это зависит от того соотношения легирующих элементов в составе стального сплава.
Сталь хорошо справляется с ударной нагрузкой. Значение ударной вязкости составляет 2,5 кг/см2. Твердость сплава находится в прямой зависимости от качества проведения термической обработки. Объемная закалка способно увеличить данный параметр до 60 единиц по шкале Роквелла.
Рельсовая марка обладает умеренной пластичностью. Относительное сужение для нее равняется 25%, что позволяет прокатывать рельсы горячим способом. Предварительно нагрев их до температуры 900-1000 ºC.
Применение и марки рельсовой стали
Как уже было сказано ранее, основное назначение данного металла — это изготовление рельс железнодорожного пути. Ниже приведен список тех марок, которые наиболее активно применяются для этой цели:
Рельсовая марка стали сегодня является одним из ключевых материалов, применяемых при изготовлении железнодорожного полотна. Это стало благодаря оптимальным значениям механических характеристик и, что не менее важно, низкой стоимостью такого рода рельс. Но до сих пор, процесс по поиску оптимального химического состава стали данной группы продолжается. Кто знает какие решения будут приняты через год, и как они повлияют на долговечность железнодорожных путей.
Транспортные стали. Марки, свойства и виды транспортных сталей
Транспортные стали (ТРС) – класс конструкционных нелегированных или низколегированных материалов с содержанием углерода не более 1%, а серы и фосфора не более 0,07%. Они могут иметь несколько легирующих элементов (ванадий, марганец, хром) с массовой долей не более 1,5%.
В зависимости от назначения ТРС делятся на рельсовые, колёсные, бандажные, осевые и др.
Стали для рельсов. Рельсы подразделяются на 4 основные типа: Р50, Р65, Р65К (аналогично Р65, но для наружных нитей кривых участков пути) и Р75 (Существуют также в ограниченном количестве облегчённые рельсы типов Р43 и Р38). Они имеют различные категории качества:
Бывают рельсы с болтовыми отверстиями на обоих концах, на одном и без отверстий. Их изготавливают либо из слитков, либо из непрерывно-литых заготовок. Для повышения качества рельсов, снижения их флокеночувствительности стали подвергают вакуумированию, контрольному охлаждению или изотермической выдержке. Основные геометрические характеристики рельсов приведены в табл. 1.
Таблица 1.Основные размеры рельсов
Наименование
Значение размера для типа
рельсов, мм
Р50
Р65
Р65К
Р75
Высота
152
180
181
192
Ширина рабочей части
(головки)
72
75
75
75
Ширина основания
(подошвы)
132
150
150
150
Ширина узкой части
Для производства рельсов рекомендуется применять специальные марки сталей. Обозначение таких марок состоит из двух цифр и нескольких букв.
Буква впереди характеризует способ выплавки:
Две цифры – среднее содержание в стали углерода в процентах, умноженное на 100.
Последующие буквы относятся к легирующим элементам для данной марки.
Перечень марок и их химический состав приведены в табл. 2.
Отметим, что термическое упрочнение является одним из основных способов повышения эксплуатационной стойкости и надёжности рельсов, поэтому механические свойства сталей связаны с качеством обработки сталей (см. табл. 3). Термоупрочнённые стали должны обеспечивать рельсам необходимую по нормам твёрдость (см. табл. 4).
Рельс Р65–Т1–М76Т–25–3/2. Гост Р 51685– 2000.
Рельс типа Р65, категория Т1, из стали марки М76Т, длиной 25 м, с тремя отверстиями на обоих концах, в соответствии с российским стандартом 51685–2000.
Рельс типа Р75, категория Т2, из стали марки Э76Ф, длиной 12,5 м, без отверстий.
Таблица 2.Химический состав рельсовых сталей
Таблица 3.Механические свойства рельсовых сталей
Категория качества
σ0,2, Н/мм 2
σв, Н/мм 2
δ, %
Ψ, %
КСU, Дж/см 2
В
850
1290
12
35
15
Т1
800
1180
8
25
25
Т2
750
1100
6
25
15
Н
–
900
5
–
–
Таблица 4.Твёрдость сталей
Место
Твёрдость сталей для категорий, НВ
В
Т1
Т2
На рабочей поверхности головки рельса
363–401
341–401
321–401
Внутри головки
≥ 341
321–341
300–321
В шейке и подошве
≤ 388
≤ 388
≤ 388
Колёсные стали. Согласно отечественным стандартам колёса изготавливаются из сталей двух марок:
Химический состав этих сталей приведён в табл. 5. Механические свойства сталей ободьев колёс, подвергнутых упрочняющей термической обработке, должны соответствовать нормам, указанным в табл. 6.
Таблица 5.Химический состав колёсных сталей по ГОСТ 10791-89
Марка стали
Массовая доля элементов, %
С
Si
Mn
S
P
V
1
—
Примечание. Содержание Ni, Cr и Cu не более 0,25% каждого.
Таблица 6.Механические свойства сталей ободьев колёс
Категория качества
σв, Н/мм 2
δ, %
Ψ, %
НВ
1
Однако согласно ГОСТ 10791-89 допускается применение в России катаных, кованых или цельнолитых колёс, изготовленных в соответствии с международным стандартом ISO 1005-6-82. Согласно этому стандарту стали бывают двух видов: если они используются для изготовления катаных или кованых колёс, то это марки R1, R2, R3, R6, R7, R8, R9, если же они применяются в цельнолитых колёсах, это марки RС1, RС2, RС3, RС6, RС7, RС8, RС9 (латинская буква С – сокращение от Cast – литой).
Первые три марки каждой группы применяются либо без термообработки, либо после нормализации с отпуском. Для остальных обязательна поверхностная упрочняющая обработка изделий в состоянии поставки или объёмная закалка с отпуском. Химический состав марок приведён в табл. 7.
Таблица 7.Химический состав колёсных сталей согласно стандарту ISO
Марка стали
Массовая доля элементов, % (не более)
С
Si
Mn
S
P
Cr
Cu
Mo
Ni
V
R1, RC1
Не оговорено
0,5
1,2
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R2, RC2
Не оговорено
0,5
1,2
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R3, RC3
0,7
0,5
0,9
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R6, RC6
0,48
0,4
0,75
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R7, RC7
0,52
0,4
0,8
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R8, RC8
0,56
0,4
0,8
0,04
0,04
0,3
0,3
0,08
0,3
0,05
R9, RC9
0,6
0,4
0,8
0,04
0,04
0,3
0,3
0,08
0,3
0,05
Примечание. Суммарное содержание примесей по хрому,
никелю и молибдену должно быть не более 0,6%.
Требования к механическим свойствам для первых трёх марок каждой группы слегка отличаются в зависимости от того, нормализована сталь или нет (табл. 8).
Чтобы убедиться, что диск колеса не затронут поверхностной обработкой, исследуются его механические свойства. В этом случае необходимо выполнение следующих условий (табл. 9.).
Таблица 8.Механические свойства сталей ободьев колёс согласно стандарту ISO
Марка стали
σв, Н/мм 2
δ, % (не менее)
КСU, Дж/см 2
R1, RC1
600–720
12
Не нормируется
R1N, RC1N
600–720
18
≥ 30
R2, RC2
700–840
9
Не нормируется
R2N, RC2N
700–840
14
≥ 20
R3, RC3
800–940
7
Не нормируется
R3N, RC3N
800–940
10
≥ 20
R6, RC6
770–890
15
≥ 30
R7, RC7
820–940
15
≥ 30
R8, RC8
860–980
13
≥ 30
R9, RC9
900–1050
12
≥ 20
Примечание. N означает проведение нормализации стали.
Таблица 9.Механические свойства сталей дисков колёс согласно стандарту ISO
Марка стали
σв, Н/мм 2 (не более)
δ, % (не менее)
R6, RC6
740
16
R6, RC6
760
16
R6, RC6
820
16
R6, RC6
880
14
Осевые стали. Колёсная пара, состоящая из оси и двух колёс, является наиболее ответственной частью вагона, так как воспринимает его вес, направляет движение вагона, выдерживает большие и разнообразные по направлению удары от неровностей пути. Для изготовления осей локомотивов, электропоездов, вагонов железных дорог и метрополитена применяется качественная углеродистая сталь ОС.
Стали для бандажей. Бандажи изготовляются из спокойных углеродистых сталей, выплавленных в мартеновских, электрических печах или конвертерным способом. В отличие от рельсовых сталей это в обозначении сталей никак не отражается.
В настоящее время существуют две марки ТРС, применяемых для бандажей:
Химический состав сталей приведён в табл. 10.
После прокатки и правки бандажи подвергаются термической обработке – закалке отдельным нагревателем с последующим отпуском. Механические свойства, которые приобретают бандажные стали после такого процесса, даны в табл. 11.
Таблица 10.Химический состав бандажных сталей
Таблица 11.Механические свойства бандажных сталей после термообработки
Марка стали
σв, Н/мм 2
δ, %
Ψ, %
КСU, Дж/см 2
НВ
2
930–1110
10
14
25
269
3
1000–1270
8
12
20
275
Стали для подкладок. Для железобетонных шпал применяют металлические подкладки нормальной и повышенной точности.
Они обеспечивают раздельное скрепление на самом пути и стрелочных переводах. Изготавливаются подкладки из углеродистых сталей обыкновенного качества Ст4 и Ст3 различных видов, у которых выполняются условия: углерод – в пределах 0,18–0,30%, мышьяк не более 0,15%. Допускается использование сталей при C ≥ 0,16%, если при этом C+Mn/4 ≥ 0,28%.
Современный мир трудно представить без железнодорожного сообщения. Рельсы применяются прежде всего, для строительства железных дорог, но также различают крановые и промышленные пути. В кинематографе камера тоже движется по специальной рельсовой дорожке.
В древних государствах (Египте, Риме и Греции) пытались найти способ, который помог бы перемещать тяжелые грузы с меньшими трудозатратами. Для этого строили каменные дороги с колеями, мостки для подъема материалов и провизии на возвышения. По таким путям перевозили морские корабли на смазанных жиром полозьях.
В XVI веке при добыче камня и угля широко использовали деревянные лежни, они позволяли лошадям за 1 подход перевозить вес в 4 раза больший, чем при обычной транспортировке. Позже они были заменены на чугунные пластины. В XVIII столетии такие конструкции строили в основном для промышленных нужд, но стали появляться участки для пассажирских перевозок на конной тяге.
Прообраз современных рельс был создан горным инженером Петром Фроловым на основе грибовидной разработки В. Джессопа. Рельсы имели выпуклую форму, колеса напротив были сконструированы с соответствующей выемкой. Это дало возможность достичь скорости 50 км/ч. Первая пассажирская железная дорога в России была построена в 1837 по маршруту Санкт-Петербург — Царское село, ее протяженность составила 27 км. Поставки чугунных изделий для строительства путей на производственных участках осуществлялись уже в 1825 году.
Современные поезда могут перевозить многотонные грузы и перемещаться на больших скоростях. Форма профиля рельсы почти не изменилась, зато увеличился вес. В сравнении с 1880-гг с 22 кг он вырос до 70-75 на каждый погонный метр. Легкие конструкции до сих пор применяются для узкоколейных дорог и малонагруженных участков. Одновременно возросли требования к производству рельсовой стали.
Рельс выполняет следующие задачи:
Для дорог со скоростью движения до 250 км/ч химический состав сплавов по ковшевой пробе регламентируется ГОСТ Р 55497-2013:
Стали с таким содержанием углерода называют высокоуглеродистыми (выше 0,6%), кремний и марганец являются полезными природными примесями и одновременно раскислителями при выплавке (ферромарганец, ферросилиций), алюминий также применяют для удаления кислорода из расплава. Фосфор и сера — природные вредные примеси, увеличивающие склонность к коррозии, хладноломкость, красноломкость. Для достижения приведенных значений осуществляется глубокая очистка. Если требуется придать готовым изделиям дополнительные характеристики используют микролегирование:
Для готовых сплавов предусматриваются допустимые отклонения от химического состава, в зависимости от элемента они не превышают сотых или тысячных долей процента, а общее содержание кислорода не может быть выше 0,003%.
Микроструктура представляет собой пластинчатый перлит с включениями феррита на границах зерен, неоднородность структуры не допускается (запрещены дефекты: пористость, пузыри, темные и светлые пятна, ликвация).
Готовую сталь после ковшовых проб разливают в изложницы, где она застывает в виде слитков. Сырье транспортируют на специальные заводы, где осуществляют следующие этапы:
Длина стандартного ж/д рельса — 100 метров. Прокладка бесстыковых перегонов и сварных плетей снижает сопротивление транспорту на 5-7%. Экономия на стыковых креплениях достигает 4 тонн на 1 км. Одновременно тяжелые рельсы равномерно распределяют нагрузку на большее число шпал, уменьшают механический износ балласта и имеют больший срок службы. Таким образом повышение металлоемкости уменьшает соотношение расхода металла и перевозимого по участку тоннажа.
Виды рельсовой стали
Марки, используемые для верхнего строения путей (ВСП) сходны по химическому составу, но соотношение твердости, пластичности и других свойств у них разное. Рассмотрим самые популярные материалы:
Стали выплавляют разными методами:
От метода выплавки зависит уровень чистоты от примесей и точность состава. В зависимости от химической формулы сплавы обладают разной склонностью к термоупрочнению, в связи с этим готовую продукцию классифицируют следующим образом:
Изделия без термической обработки пригодны для высокоскоростного пассажирского транспорта и путей общего назначения обычной, повышенной и высокой прочности.
Термообработке подвергают рельсы с увеличенной низкотемпературной и контактной надежностью, повышенной износостойкостью для совмещенного движения (пассажиропоток+ грузоперевозки).
Маркировка рельсовой стали
Стальные сплавы для путей общего назначения по ГОСТ Р 51685-2013 обозначаются буквами и цифрами, например: Э76Ф, М76Т, 76ХСФ, 90ХАФ. Рассмотрим, как расшифровываются маркировки:
Рельсы для узкоколейных дорог производят по ГОСТ 5876-82, предусмотрено всего три марки стали: Н50, Т60, ПТ70. В зависимости от содержания углерода действует классификация:
Цифры указывают на углеродную долю в сотых долях процента. К этим изделиям предъявляют меньше требований (например их твердость всего 170-250 НВ) поэтому допускается изготовление из сталей с индексами раскисления СП и ПС. В металле больше вредных примесей, влияние которых компенсируется мышьяком, повышающим износостойкость и твердость.
Требования к массовой доле элементов в составе марки рельсовой стали
Марка стали
Массовая доля элементов %
Углерод
Марганец
Кремний
Ванадий
Титан
Хром
Фосфор
Сера
Алюминий
Не более
К78ХСФ
>0,76-0,82
0,75-1,05
0,40-0,80
0,05-0,15
0,040-0,60
0,025
0,025
0,005
Э78ХСФ
М76Ф
0,71-0,82
0,25-0,45
0,03-0,15
0,035
0,040
0,020
К76Ф
0,030
0,035
Э76Ф
0,025
0,030
М76Т
>
>0,007-0,025
0,035
0,040
К76Т
0,030
0,035
Э76Т
0,025
0,030
М76
>
0,035
0,040
>0,025
К76
0,030
0,035
Э76
0,025
0,030
В марках стали буквы М, К, Э – обозначают способ выплавки стали, цифры – среднюю массовую долю углерода, Буквы Ф, С, Х, Т – легирование стали ванадием, кремнием, хромом и титаном соответственно.
Допускается массовая доля остаточных элементов – хрома (В рельсах категории Т1, Т2, H), никеля и меди не более 0,15% каждого, при суммарной массовой доле не более 0,40%.
Химический состав для Р65К должен соответствовать указанному, за исключением массовой доли углерода, которая должна быть 0,83 – 0,87%. При этом цифры в марке стали заменяют на 85.
Механические свойства рельсовой стали
Сталь для изготовления рельсовых путей должна противостоять циклическим нагрузкам, обладать достаточной твердостью и пластичностью. Для проведения контрольных испытаний используют рельсы начала и окончания плавки, промаркированные специальным образом.
Механические свойства замеряют с учетом параметров готовой продукции (толщины металла, показателей, полученных при термообработке). Основные характеристики:
Конструкция профиля состоит из головки катания, шейки и подошвы. Изготовить и эксплуатировать изделие с равными показателями твердости во всех частях довольно затруднительно, поэтому твердость по Бринеллю (НВ) измеряют в нескольких точках:
Наибольшая прочность в точке 1, а наименьшая в — 5, при этом разность значений не должна превышать 30 НВ. Все показатели сводятся к эксплуатационным качествам: предел выносливости, эксплуатационная надежность, циклическая трещиностойкость.