какая может быть логика
Логика: предикатная, формальная и сентенциальная. Кванторы и создание информатики
1 | Введение
Логика, как эпистемологический инструмент, изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух перечисленных государствах логика не распространилась настолько, чтобы «прижиться» и получить своё полноценное развитие. В античной же Греции произошло наоборот — логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.
Значительные изменения в греческую логику, помимо Дж. Буля, О. де Моргана и Б. Рассела, внёс Готлоб Фреге — он придумал 2 вида кванторов. А также Курт Гёдель, открыв знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.
На этом этапе некоторые заметят влияние платонизма на австрийского логика. Верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.
Платон — учитель Аристотеля
В другие периоды в логику также вносили дополнения:
античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;
также средневековыми схоластами введены несколько понятий;
Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:
Физика — наука о природе;
Метафизика — наука о природе природы;
Биология — раздел физики, наука о жизни;
Психология — раздел физики, наука о душе;
Кинематика — раздел физики, наука о движении;
2 | Терминология
У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и выводить новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, т.к. информация бы не поддавалась анализу.
Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т. д., описывая это в своём труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.
В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.
Слово «правильный» сразу веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.
Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.
Бюст Аристотеля
3 | Формальная и неформальная логика
Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.
Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.
Законы формальной логики:
1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.
2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.
3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.
Принципы формальной логики:
1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.
4 | Сентенциальная логика (алгебра высказываний)
Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:
Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным, утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.
Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».
Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.
Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.
Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.
5 | Предикатная логика первого порядка
В XX веке, после добавлений в логику работ Готфрида Лейбница и Готлоба Фреге, на основе этой дисциплины создаётся новая — информатика. Языки программирования основываются на видоизменённой логике Аристотеля — предикатной логике, описательная способность которой выше, чем у логики высказываний (сентенциальной). Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.
Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («… пошёл в зоопарк»). Субъект — кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.
Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.
Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.
Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:
Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.
Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что картофеля не существует, достаточно показать одну картофелину для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:
6 | Заключение
Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».
В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…
Источники:
1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;
2 — Аристотель: «Риторика»;
3 — Готлоб Фреге: «Исчисление понятий»;
4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;
5 — The Early Mathematical Manuscripts of Leibniz;
6 — Мельников Сергей: «Введение в философию Аристотеля»;
7 — Гильмутдинова Нина: «Логика и теория аргументации»;
Что такое ЛОГИКА – зачем она нужна. Виды логики
Логика. Не каждый человек задумывался о том, что такое логика. Хотя логическое мышление присутствует в жизни повсеместно от простых бытовых дел до решения сложных математических задач. Оно неотделимо от науки и творчества, повседневных диалогов и решения насущных дел.
Логика – что это?
Этот термин имеет древнегреческие корни. Он образован от древнегреческого слова «логос», что понимают, как слово, рассуждение, мысль, смысл или разум. Самое простое определение логики – это наука о правильном мышлении, здравомыслии. Она зародилась примерно в V в. до н.э. благодаря трудам философа и мыслителя Аристотеля, который и считается основателем традиционной логики.
Существуют и другие толкования:
Зачем нужна логика?
Основной целью логического мышления является изучение определенной последовательности событий, явлений или действий, их взаимосвязи. То есть человек с помощью разума накапливает имеющиеся знания, аккумулируя их из разных источников, и строит причинно-следственные связи. Индивид руководствуется не своим эмпирическим опытом, а достоверными фактами.
Разобравшись с тем, что такое логика, можно сделать вывод о ее необходимости для:
Виды логики
Благодаря сохранившимся историческим документам доподлинно известно, что логика как наука о законах и формах мышления зародилась примерно 2500 лет назад. С тех пор она претерпевала определенные изменения, которые привели к выделению трех основных видов логики:
Формальная логика
Самым древним считается раздел философии под названием формальная, формально-фактическая или дискретная логика, отцом которой и был знаменитый Аристотель. Он рассматривал эту науку как возможность восприятия и оперирования формальными фактами и связями между ними без учета содержания. Выясняя, какие проблемы решает формальная логика, отметим, что она проверяет правильность рассуждений в современном мире. Важно абстрагироваться от конкретики и учитывать только общую форму суждения или вопроса.
Простым примером можно назвать констатацию факта: «на улице тепло и сухо, поэтому я пойду и прогуляюсь». Такой тип мышления заложен в каждом человеке, ведь впервые видя собеседника, индивид оценивает его внешний вид и подмечает другие особенности, складывая пазл в единую картину. Если же увиденное не соответствует принятым стандартам, то шаблон ломается.
Математическая логика
В начале XIX в. традиционная формальная теоретическая логика пополняется арсеналом математических методов с использованием искусственных языков. Так сформировалась символическая или современная логика, как ее принято называть. Математический подход позволил вывести способность к рассуждению ученых в разных областях науки на новый уровень,
Такая модель упрощает процесс познания благодаря замене слов привычного языка, которые могут нести двусмысленность и неточность, формальными символами. Многие проблемы, которые изучает математическая логика, невозможно сформулировать привычными словесными выражениями с использованием известных методов. Нередко такую науку в более широком плане причисляют к металогике или метаматематике.
Диалектическая логика
Немецкий философ Гегель и последователи марксистской материалистической теории основатели так называемую диалектическую логику, базой для развития которой стала дискретная логика. В ее основе лежит метод руководства не только формой, но и содержанием явлений, объектов и процессов. То есть такая наука о познавательной деятельности может рассматривать не отдельные противоположности, а их связь и схожесть между собой. У этого раздела философии существуют свои законы и принципы:
Законы логики
Как и в любой науке, здесь существуют определенные правила. Закон логики – это принцип, которому необходимо следовать, чтобы из истинных суждений получить правильный вывод. Их разработал и сформулировал еще Аристотель, изучая формальную логику, в которой использовались словесные суждения. Существует четыре базовых закона, нарушение которых приводит к появлению умышленных или неумышленных ложных выводов:
Закон тождества
Изучая, что такое наука логика, непременно сталкиваются с ее первым законом тождества или равенства. Некоторые именуют его принципом постоянства. Суть состоит в том, что на всем протяжении логического рассуждения изначальное понятие должно сохранять свой первоначальный смысл. Искажение, которое свойственно многим языкам и двойственность, многозначность, могут привести к ложным выводам.
Примером несоблюдения этого принципа является простой диалог:
Закон непротиворечия
Еще одним фундаментальным постулатом является закон непротиворечия. Его суть состоит в том, что два противоположных высказывания не могут быть одновременно истинными. Одно или оба из них обязательно окажутся ложными. Можно привести простой пример иллюстрации этого закона:
Закон исключенного третьего
Нередко студенты изучая, что такое наука логика, путают предыдущий закон с принципом исключенного третьего. Они схожи, но суть каждого все же отличится. Этот закон сформулирован так, что истинным может быть либо само суждение, либо же его отрицание. Третьего не дано. То есть закон оперирует не противоположными понятиями, а противоречащими друг другу. К примеру:
Закон достаточного основания
Четвертый закон – логического мышления, был сформулирован не Аристотелем, а лишь в XVIII в. озвучен Готфридом Лейбницем. Суть принципа состоит в том, что любой тезис будет иметь силу только тогда, когда будет подтвержден аргументами. Причем они должны быть такими, чтобы исходная мысль четко вытекала из них.
Самым ярким и знаменитым примером применения закона достаточного основания в жизни является принцип так называемой презумпции невиновности:
Как развить логику?
Многие философские термины и примеры могут показаться обывателю сложными и мало применимыми в обычной жизни. Однако каждый из указанных выше законов мы часто неосознанно можем встретить в любом споре или диалоге, когда собеседники, стремясь ввести друг друга в заблуждение, сознательно или неосознанно их нарушают. Навыки того, как развить логическое мышление, могут пригодиться каждому индивиду для достижения успехов в разных сферах науки и жизни.
Логическое мышление закладывается у человека в раннем возрасте, а умение мыслить абстрактно формируется примерно в 7-8 лет и развивается всю жизнь. Для качественного и полноценного его развития нейропсихологи советуют:
Что такое логики и какие логики бывают?
Относится к разделу Наука
Жили в грузинском селе три брата. Украл у них кто-то барана.
Первый брат говорит:
— Раз украл, значит рыжий.
Второй продолжает рассуждение:
— Раз рыжий, значит, кривой.
Третий завершает:
— Раз рыжий и кривой, значит, Гоги.
Пошли они бить Гоги. Схватили их соседи и привели к судье. Тот спрашивает, почему они бесчинствуют?
— Мы не бесчинствуем, а вора бьем. Гоги у нас барана украл.
— А как вы это узнали?
— Логически.
Рассказали братья свои рассуждения.
— Да где же здесь логика? Так вы что угодно доказать сможете!
— Не что угодно, а лишь правду.
— Ну ладно, я сейчас выйду в соседнюю комнату и что-то спрячу в ящичек, а вы логически установите, что я спрятал.
Возвращается судья с ящичком. Первый брат говорит:
— Раз спрятано, значит, круглое.
Второй продолжает:
— Раз круглое, значит, белое.
Третий завершает:
— Раз круглое и белое, значит, яйцо.
Судья открывает ящичек, показывает всем яйцо и заявляет:
— Гоги, сейчас же отдай барана и заплати штраф!
Грузинско-русский анекдот.
Что такое логика?
Логика определяется как «формальная наука о способах доказательного рассуждения». Обычно понятие доказательного рассуждения показывается на примерах (силлогизмах), подобным следующему:
На подобных рассуждениях иллюстрировал логику и её создатель Аристотель, и его последователи многие столетия (по традиционной хронологии 2000 лет, но нужно помнить, что измерения в истории подчиняются тем же законам, что и физические измерения, и точность дат из древней истории, вычисленная по законам, по которым обрабатываются физические измерения, 500 лет). Льюис Керролл 1 заметил, что логика применима и к рассуждениям в возможных и невозможных мирах, подобным следующему:
Примеры исчислений и логик
Начнем с простейшего примера исчисления, в котором выводятся правильно построенные скобочные конструкции и только они. Например, (()())() в нем выводится, а (())) — нет. Это исчисление задаётся тремя правилами вывода, которые позволяют выводить новые объекты из уже полученных ранее.
Поскольку в структуре дерева для нас важно лишь то, что новые объекты могут быть построены лишь на базе уже построенных ранее, это дерево часто записывается как последовательность объектов: Програм мист при этом может заметить, что, перейдя от дерева к последовательности (что, как прокомментирует математик, никакой существенной роли не играет), мы коренным образом изменили структуру данных: теперь у нас имеется сеть, в которой один и тот же объект может использоваться несколько раз (в данном случае таким объектом была лишь наша аксиом а). Вспомните, что писалось в статье «Чего не могут вычислительные машины?» Когда теор етик говорит, что это все безразлично, практик должен насторожиться. На этом примере показаны все характерные черты традиционных исчислений. Новые объекты получаются из уже выведённых по правилам вывода. С теор етической точки зрения вывод может быть записан как последовательность объектов либо как дерево. Только что приведённое исчисление выводило объекты, которые сами по себе особого смысл а не имеют. Но ещё в 20-х гг. прошлого века Д. Гильберт и его ученики переформулировали аналогичным образом исчисление высказываний. В этом исчислении объектами являются формулы, построенные при помощи связок
(«и», «или», «следовательно», «не»). Его фрагмент, содержащий лишь импликацию, задаётся тремя правилами с нулем посылок (схемами аксиом ) и одним правилом с двумя посылками:
(1)
(2)
(3)
(4)
Это исчисление называется классической импликативной (импликация = следствие) логикой в форме Гильберта. Формулы имеют обычное истолкование, основанное на таблицах истинности. В этом исчислении выводятся те и только те импликативные формулы, которые тождественно обращаются в истину. Но установить это исключительно нетривиально.
В принципе (и даже в реальности) таблица истинности, в которой рассмотрены все наборы значений и получена тождественная истина, сама по себе является доказательством формулы исчисления высказываний. Но такое доказательство несколько туповато: в любом случае нужно рассматривать все значения, получается гарантированный полный перебор. А гильбертовское доказательство выглядит порою просто безумно. Например, вот как доказывается простейшая теор ема :
(2)
(3)
(3)
На примере гильбертовского исчисления видны характерные признаки исчислений, обоснованно претендующих на звание логик.
В частности, классическая логика прекрасно подходит для проверки статических высказываний о неизменном мире. А поскольку изменяемый мир может быть представлен как структура мгновений, в которые он неизменен, теор ии, базирующиеся на классической логике, с успехом применяются и для проверки утверждений о динамических системах. Конечно же, здесь мы сталкиваемся с неустранимой проблемой неразрешимости, но идеальных решений человеку не дано, так что то, что в принципе проверяемо при помощи классической логики, в реальности может оказаться неразрешимым. Заметим, что в предыдущем абзаце отсутствует слово «доказательство». Если бы мы ограничились задачей доказательства, классическая логика стала бы ещё более подходящей. Именно поэтому «практические» (что, как следует из многих уже сказанных вещей, да и из многого другого, означает: бесконечно далекие от практики) математики никакой другой логики не знают и знать не хотят. Но задача «доказать» включает в себя элемент жульничества. Для практики нужно проверять. Вы, наверно, уже слышали, что классическая логика не единственна. Но в большинстве популярных изданий и в «общественном мнении» проводится в корне неправильная точка зрения на неклассические логики: дескать. они многозначные, там могут быть другие значения формул, кроме двух стандартных: истина и ложь. Многозначные логические исчисления (даже если они могут претендовать на имя логики) являются скорее модификациями классической логики. Самые интересные и самые важные для приложений неклассические логики — те, где переходят к совершенно другой семантике формул.
Конструктивные логики
теор емы сущ»>Отступление: Грязные теор емы существования 3
Многие математические теор емы, утверждающие существование объекта, на самом деле никакого построения не то, что не дают, а в принципе дать не могут. В школьном курсе таких теор ем стыдливо избегают, но классический курс высшей математики начинается с такой теор емы: любое ограниченное множество действительных чисел имеет верхнюю грань. Но она ещё не столь грязна, как другие теор емы, для которых не то, что построить, но и однозначно описать объект, существование которого доказывается, нельзя даже с привлечением самых мощных математических средств. Пример такой теор емы — знаменитая польская теор ема о разрезании шара: Шар можно разбить на четыре подмножества таким образом, что, попарно совмещая их в пространстве, можно сложить два таких же шара.
Возможные миры
Невозможные миры
Релевантные логики исследуют логические зависимости, связь по смысл у между высказываниями. В принципе, модальные и релевантные логики были бы великолепными инструментом програм мист а. Первые — для анализа противоречивых требований заказчиков или начальства. Вторые — для анализа собственных и чужих рассуждений, чтобы понять, где же кроется хитрая ошибка в программе. Но до такого уровня они ещё не доросли. Желающим подробнее ознакомиться с состоянием современной логики автор мог бы рекомендовать, скажем, свою книгу: Непейвода Н. Н. Прикладная логика. Издание второе. Новосибирск, НГУ, 2000 г.
Сноски
1 Точнее, проф. Додсон, поскольку работы по логике он публиковал под своим настоящим именем, но в данном случае можно вспомнить русского поэта Фета, чья дворянская фамилия была Шеншин; когда царь пожаловал ему эту фамилию, признав его законным сыном русского дворянина, образованное общество иронизировало: «Как Фет, Вы имели имя, а теперь лишь фамилию»
2 Будучи как-то раз на выставке картин акад. Фоменко, автор, наслаждаясь гениально выраженными идеальными сущностями, переданными в абстрактных и сюрреалистических образах, услышал за спиной разговорчик группки «интеллектуалов богемного вида»: — Это какой же дури надо было нанюхаться, чтобы придумать такое! Вот классно! «Творческая интеллигенция», из-за полного отсутствия представлений о платоновских идеальных мирах, которые приоткрывает настоящая наука (прежде всего, математика), не видит другого способа стимуляции воображения, кроме «дури».
3 По привычке математиков давать самым отвратительным вещам самые приятные названия, чтобы замаскировать скрытые уродства своей науки, они в обычной литературе называются «чистыми». После публикаций и докладов автора многие математики стали называть их грязными.
Об авторе:
Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.