какая муфта полного привода лучше

Муфты полного привода. Устройство и принцип работы.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Описываемый ниже тип включения полного привода настолько распространён, что перечень всех автомобилей, где он устанавливается будет достаточно обширным.
Renault Duster, Nissan Qashqai, Mitsubishi Outlander, Hyundai Tucson, Hyundai Creta (upd. в комментариях поправили, что на Creta стоит муфта другого типа), Ford Escape, Mazda CX-5 — это лишь некоторые из тех, что на слуху. В основном, конечно же, это так называемые “паркетники”, где установка полноценных раздаточных коробок невозможна из-за плотной компоновки. Так же малые габариты и простота управления позволяют устанавливать муфты этого типа и на совсем маленькие автомобили типа Mini Cooper. Однако и это далеко не вся область применения. Точно такие же муфты (правда, открытого типа и покрупневшие в размерах) можно обнаружить и в составе “взрослых” раздаточных коробок (например Borg Warner 4405 для Ford Explorer или Borg Warner 4406 для Ford Expedition/Lincoln Navigator).
Устройство муфты.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Конструктивно муфту можно разделить на три части:
— электромагнитная муфта для активации функции полного привода управляемая внешним электронным блоком;
— кулачковая муфта, предназначение которой — преобразование разницы крутящих моментов на входном и выходном валу в усилие сжатия фрикционного пакета;
— фрикционная муфта посредством которой и передаётся основной крутящий момент от входного вала к выходному.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

На большинстве автомобилей все эти муфты (за исключением неподвижной катушки) заключены в герметичный корпус в который залита специальная трансмиссионная жидкость. Сделано это из-за слишком разных требований к маслам используемых в гипоидных зубчатых передачах (главная пара) и в передачах с использованием фрикционных материалов.
Для простоты представления процессов рассмотрим работу муфты на примере работы в режиме принудительного полного привода. В этом случае алгоритмы работы электроники управляющей включением электромагнитной муфты можно опустить.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

При включении принудительного полного привода происходит подача напряжения на катушку электромагнитной муфты (6). Якорь (3) электромагнитной муфты притягивается к катушке и смещаясь по шлицам обоймы кулачковой муфты (2) входит в зацепление с корпусом муфты образуя жёсткую кинематическую связь обоймы (2) с входным валом. Вторая обойма (1) кулачковой муфты постоянно зацеплена с выходным валом посредством шлицов.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Пока вращение входного и выходного валов синхронно (езда по твёрдому покрытию с хорошим сцеплением) ничего не происходит. Но как только возникает пробуксовка передней оси, входной вал смещается вперёд относительно выходного. Это приводит к смещению шарика (5) кулачковой муфты в бороздках. А так как бороздки имеют переменную глубину (скосы) шарик начинает давить на обоймы обгонной муфты. Обойма (2) упирается в корпус. Обойма (1) имеющая нажимной диск начинает сжимать фрикционную муфту. Сила сжатия будет расти до того момента пока угловые скорости входного и выходного валов не выравняются. То есть конструкция муфты такова, что при её срабатывании никакой пробуксовки (больше чем это достаточно для срабатывания кулачковой муфты, т.е. считанные градусы) в муфте нет. Как только начинается пробуксовка, обоймы кулачковой муфты смещаются ещё больше и фрикционный пакет сжимается с бОльшей силой пока пробуксовка муфты не будет устранена.
Правда тут есть нюанс. На дорогих спортивных авто в конструкцию муфты вносят дополнительное усовершенствование. Между якорем (3) и корпусом муфты устанавливается ещё один “первичный” (primary) пакет фрикционов. Тогда за счёт модуляции сигнала на катушке (6) появляется возможность контролировать блокировку обоймы муфты (2) допуская её некоторое проскальзывание. Тем самым появляется возможность гибко перераспределять крутящий момент между передней и задней осью. Необходимо это для изменения поведения в повороте (баланс между избыточной и недостаточной поворачиваемостью) у машин претендующих на гордое звание раллийных или спорт-каров. К недорогим паркетникам это никоим образом не относится. Там муфта работает просто по принципу вкл/выкл. Однако, “дорогие технологии” постепенно становятся более доступными и есть основания надеяться, что вскоре можно будет заняться подобной тонкой настройкой и бюджетных авто.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Но тогда возникает закономерный вопрос: как же тогда возникает перегрев муфты? А возникает он по совокупности факторов.
1. Трение во фрикционном пакете при включении муфты хоть и минимально по времени, но всё есть. Учитывая передаваемый момент и цикличность включений-выключений муфты (на некоторых режимах езды и неправильной буксовки, о чём ниже) выделение тепла может достигать значительных величин.
2. Нагрев электромагнитной катушки. Он достаточно мал, чтобы вызвать перегрев даже будучи включённой значительное время, но всё же тоже вносит вклад.
3. Нагрев в результате проскальзывания якоря (3) по корпусу муфты. Это не является штатным функционированием, но может возникать при резком включении муфты. Например, при езде на высоких скоростях по нестабильным покрытиям в режиме 4WD AUTO. При этом время включения фрикционной муфты (то есть время проскальзывания в ней) увеличивается, а значит и увеличивается тепловыделение в ней.
Интересен так же способ, которым контроллер определяет температуру муфты. Датчиков температуры муфты на большинство указанных авто не устанавливается, тем не менее контроллер как-то определяет температуру. А определяет он её по изменению сопротивления катушки, то есть по изменению тока протекающего через неё. Сопротивление меди увеличивается с ростом температуры. Изменение составляет около 25% при увеличении температуры на 60°C. Электроника просто измеряет изменение силы тока при приложенном напряжении и высчитывает сопротивление. По изменению сопротивления можно вычислить температуру. Измерения не являются абсолютно точными (измерения калиброванным датчиком будут заведомо точнее), но более чем достаточными для выявления перегрева.
При выключении муфты обесточивается катушка (6), под действием пружинного диска якорь муфты “отлипает” от корпуса муфты. Тем самым пропадает кинематическая связь между входным валом и обоймой кулачковой муфты (2), она получает возможность свободного вращения относительно корпуса на игольчатом подшипнике (4). Шарик (5) кулачковой муфты под действием сил реакции сжатого фрикционного пакета стремится занять устойчивое положение в углублении обойм (1) и (2), а так как препятствующих ему это сделать сил нет (обойма (2) свободно вращается), он “распускает” кулачковую муфту, а та в свою очередь — фрикционный пакет. Муфта разблокирована.
Теперь ещё один нюанс. Так как механическая блокировка приводится в действие от разницы в частотах вращения хвостовиков переднего и заднего мостов учитывается не пробуксовка какого-то конкретного колеса на оси, а средняя арифметическая скорость вращения левого и правого колёс осей. То есть, например, при диагональном вывешивании при активной работе газом за счёт инерции вывешенных колёс скорости вращения входного и выходного валов муфты будут периодически выравниваться и меняться местами вызывая смещение шарика (5) кулачковой муфты и разблокировку фрикционной муфты. аналогичные процессы будут происходить и при “дрифтинге” и, само собой разумеется, при смене направления движения.
Из этого следует, что дифференциал заднего моста с блокировкой сильно облегчил бы жизнь муфте полного привода. Количество ненужных включений-выключений сильно бы сократилось.
Теперь обсудим, что будет происходить в муфте при износе её компонентов.
Кулачковая муфта — практически вечная. Ей как и подшипникам грозит только контактная усталость и выкрашивание пятна контакта шарика с канавками, но даже и с такими дефектами она будет работать ещё достаточно долго вплоть до полного разрушения, так как относительные скорости шарика и обойм ничтожно низкие.
Износ якоря (либо фрикционных дисков первичного пакета, неравномерный, либо с задирами) и его контактной поверхности на внутреннем корпусе муфты приведёт к пробуксовке обоймы кулачковой муфты (2) и неполному сжатию фрикционного пакета. Как правило сопровождается это заметными рывками в трансмиссии под большой нагрузкой. Однако такой вид износа достаточно редок (помним, что относительные скорости входного и выходного валов невысоки, а при штатной “мягкой” эксплуатации и вообще около нуля).
Износ фрикционного пакета муфты до какого-то момента компенсируется кулачковой муфтой. Просто увеличиваются ходы её обойм до блокировки муфты. Но когда предел будет достигнут кулачковая муфта превратится в подшипник. При этом будут слышны достаточно громкие щелчки всякий раз, когда шарики будут проскакивать углубления в обоймах. При этом так же возможны рывки в трансмиссии но гораздо более вялые нежели в предыдущем случае.
Подведём итог. В достоинства муфты занесём простоту конструкции, минимум движущихся частей (а те, что есть, движутся с невысокими относительными скоростями), простоту управления без применения дорогих сервоприводов, герметичность конструкции (никаких выходящих наружу тяг и валов управления), плавность включения, опция управления передаваемым на задние колёса моментом. Недостаток по сути один — отсутствие возможности постоянного жёсткого подключения полного привода.
P.S. А вот видео с конструкцией муфты полного привода ранних Дастеров:


Источник

Философии полного привода: Quattro, 4Matic, xDrive и азиаты – в чем отличия

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Если в эту секунду кто-то на земном шаре не спорит об эффективности конструкций полного привода, значит время остановилось. Или вымерли все автомобилисты. Потому что всегда были и всегда будут непримиримые фанаты Audi Quattro, BMW xDrive, а также полноприводных Subaru и Mitsubishi… Самое смешное, что зачастую спорщики вообще не в курсе «матчасти». Они твердо знают, что Evo круче STI (или наоборот), но вот почему – это уже сложнее. Мы собрали подробности о конструкции всех основных легковых систем 4х4.

Зачем это нужно?

Не так давно наш эксперт Борис Игнашин написал довольно подробный материал о том, зачем в принципе нужен легковой полный привод. Здесь мы сосредоточимся на технических и философских отличиях знаменитых систем 4х4, однако вкратце все-таки поясним, в чем смысл сего безобразия.

Самое очевидное “легковое” преимущество полноприводной трансмиссии — лучшая разгонная динамика: понятно, что машина быстрее разгоняется, если крутящий момент передается на все колеса, а не только на одну пару. Особенно это ощутимо на скользком покрытии и при избытке мощности: у некоторых спорткаров, имеющих модификации с разным типом привода, даже паспортное время ускорения до 100 км/ч меньше для версий “4Х4”. Но все же у каждого колеса есть некий предел сцепления, и если при прямолинейном движении он ограничивает только величину реализуемого момента, то в повороте все несколько сложнее.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Тут нагрузка на ведущее колесо складывается из продольной силы, то есть вектора тяги, и поперечной, которая стремится сдвинуть машину наружу от центра дуги, — когда сумма этих сил превышает указанный предел, начинается скольжение. То есть, колесо, нагруженное моментом, хуже сопротивляется боковой нагрузке — именно поэтому в общем случае заднеприводные автомобили обладают избыточной поворачиваемостью (склонностью к заносу задней оси), а переднеприводные — недостаточной (снос передних колес). На практике встречаются исключения из этого правила, обусловленные различным распределением массы по осям и прочими факторами, но проблема имеет место быть, равно как и решение — полный привод.

Впрочем, здесь тоже все не так однозначно, причем в прямом смысле слова. Если моноприводная машина для мало-мальски квалифицированного и опытного водителя не является загадкой, то, заходя в быстрый поворот на полном приводе, нужно быть готовым как с сносу, так и к заносу, не говоря уж о скольжении всех четырех колес, причем одна фаза может моментально смениться другой.

Такое своенравие проявилось на одном из первых серийных полноприводных автомобилей Jensen FF, увидевшем свет еще в 60-х годах прошлого века. Автомобильные журналисты восторгались феноменальной устойчивостью британского спорткара (к слову, мощность его двигателя превышала 300 л.с.) на мокрой дороге, но отмечали, что по достижении предела он срывается резко и непредсказуемо, и “отловить” его очень непросто. С тех пор вот уже полвека конструкторы бьются над созданием полного привода без страха и упрека не для бездорожья, и определенные успехи, конечно же, есть.

Quattro и немцы

Первой по-настоящему удачной “легковой” системой полного привода считается знаменитая quattro от Audi (мы писали о ее истории очень подробно), сначала апробированная в ралли (и именно благодаря этому так “раскрученная”), а с 1981 года используемая и на “товарных” автомобилях. Между тем, поначалу в чем-то эта трансмиссия была даже более примитивной, чем у того же “Дженсена” пятнадцатилетней давности.

Англичане уже тогда использовали самоблокирующийся межосевой дифференциал оригинальной конструкции, причем несимметричный. У Audi же тяга распределялась между осями в пропорции 50:50, а роль “центра” играл обычный планетарный дифференциал, принудительно блокируемый водителем, примерно как у нашей “Нивы”.

Заслуга немцев была в другом: они очень грамотно скомпоновали свою трансмиссию, идеально приспособив ее для традиционной “аудюшной” схемы — изначально передний привод и продольное расположение силового агрегата. Что же до передовых решений, то их долго ждать не пришлось: через несколько лет распределением тяги уже заведовал вышеупомянутый механический “самоблок” Torsen, мгновенно и плавно реагирующий на изменение условий движения.

Однако повадки полноприводников Audi все еще тяготели к переднеприводности: чтобы побороть недостаточную поворачиваемость, машину нужно было по-раллийному “ломать” на входе в поворот решительными действиями рулем или педалью акселератора. Разумеется, речь идет об экстремальном вождении, в штатных режимах автомобили отлично держали дорогу и охотно вписывались в повороты, но все же.

И в 2007 году Torsen стал асимметричным: “по умолчанию” он раздавал крутящий момент в соотношении 40:60 в пользу задних колес, а при необходимости они могли получать вплоть до 80 процентов тяги. В это же время и развесовка новых моделей была пересмотрена: если раньше конструкторы стремились максимально загрузить передние ведущие колеса, то теперь в угоду управляемости акцент делался на задние.

В результате система quattro, несомненно, выиграла, но, например, модель А4, лишенная ее “в базе”, стала “недоприводной”: резкий старт на ее начальной переднеприводной версии весьма проблематичен из-за недостаточной загрузки передка. Справедливости ради нужно заметить, что “младшая” Audi A3 избежала подобной участи, поскольку она базируется на платформе Volkswagen Golf с поперечным расположением двигателя, и философия quattro тут совсем другая, основанная на постоянном переднем приводе и автоматически подключаемом заднем с фрикционной муфтой Haldex.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

На фото: Audi Quattro

Подобные муфты, управляемые электроникой, только в приводе передних колес, использует сегодня BMW в своей трансмиссии xDrive. Правда, баварцы пришли к этому не сразу: с 1985-го до конца 90-х они использовали блокировки межосевого и заднего межколесного дифференциалов с помощью вискомуфт, затем им на смену пришли электрогидравлические муфты, а на рубеже веков проводились сравнительно недолгие эксперименты со свободными дифференциалами и электронной эмуляцией блокировок (тормозные механизмы “прихватывают” буксующие колеса, перераспределяя тягу на остальные).

Сегодня она сохранена на межколесном уровне, а межосевая муфта работает в тесном содружестве с электронными системами безопасности, отслеживающими массу различных параметров и дающими сигнал к степени сжатия фрикционных дисков. Этим xDrive принципиально отличается от quattro, где блокировка механическая, но, в отличие от Audi, полноприводные BMW при необходимости могут превращаться в чисто заднеприводные, что иногда очень даже неплохо.

А что же третий участник большой немецкой тройки? Вот уже более пятнадцати лет Mercedes остается верным концепции 4Matic, впервые воплощенной в 1997 году в трансмиссии кроссовера М-класса: свободные дифференциалы (межосевой — с небольшим “заднеприводным” акцентом) и никаких блокировок, только их имитация с помощью тормозов. Но имитация весьма убедительная: если хотя бы одно колесо сохраняет надежный контакт с покрытием, машина способна двигаться, а на скользкой дороге умная электроника ловко жонглирует тягой, избегая как недостаточной, так и избыточной поворачиваемости.

Между тем, начинался “Фирматик” в 1986 году с весьма мудреной по тем временам схемы: у полноприводного седана Е-класса было целых три гидромуфты, автоматически подключавших привод на передние колеса, а затем блокировавших межосевой и задний межколесный дифференциалы.

Похожую конструкцию имела трансмиссия суперкара Porsche 959, серийная версия которого увидела свет в том же 1986, с той лишь разницей, что у него двигатель располагался сзади, а блокировкой “центра” заведовал чрезвычайно продвинутый для своего времени компьютер. У нынешних полноприводных Porsche “мозги”, разумеется, помощнее, но суть та же: электроника в тесном содружестве с системами безопасности управляет многодисковой муфтой в приводе передних колес, примерно так же, как у BMW.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

На фото: Porsche 959

Азиатский ответ

В Японии пионером в широком применении полного привода на легковых автомобилях считается сравнительно небольшая компания Fuji Heavy Industries, выпускающая машины под маркой Subaru. Сначала, в 70-х годах, они отличались явным внедорожным уклоном, но постепенно выкристаллизовалась схема знаменитого симметричного полного привода, явно не без влияния Audi.

С концепцией quattro ее роднят и продольное расположение двигателя, и базовый передний привод, и множество вариаций, возникавших в процессе эволюции, — но, в отличие от немцев, японцы все же отошли от идеи “честного” постоянного 4WD: с недавних пор на автомобилях с “автоматом” используется муфта автоматического подключения заднего моста.

Впрочем, это не помешало “субаровцам” создать настоящую легенду: в 1992 году дебютировала модель Impreza, созданная на укороченной платформе Legacy специально с прицелом на участие в ралли (еще одна параллель с Audi quattro). Гражданская версия спортивного болида получила обозначение WRX и самый мощный вариант STI, который быстро приобрел статус культовой машины для поклонников активного драйва. Гарантом этого стала трансмиссия с блокировками дифференциалов, где в разных поколениях использовались и вискомуфты, и тот же Torsen, а у нынешней STI между осями стоит конструкция под названием DCCD (Driver Control Central Differential), способная менять степень блокировки как самостоятельно, так и по желанию водителя.

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

На фото: Subaru Impreza

Извечный соперник спортивной “Импрезы” — Mitsubishi Lancer Evolution, стартовавший в том же 1992 и к настоящему времени переживший уже десятую смену поколений. Главное отличие от Subaru — поперечно расположенный двигатель, в остальном все похоже: постоянный полный привод, где “центр” изначально блокировался вискомуфтой, а теперь эта функция возложена на электронику.

Но главный козырь Mitsubishi — разработанный еще в 1996 году и совершенствовавшийся задний дифференциал AYC (Active Yaw Control): он не просто блокируется, а изменяет передаточное отношение главной передачи для каждого из колес отдельно с помощью редуктора, “подкручивая” в повороте то из них, на которое приходится большая нагрузка. В последней версии водитель может выбирать различные режимы работы трансмиссии, в зависимости от чего машина и едет по-разному: либо очень быстро и безопасно, следуя заданной траектории, либо по-хулигански, позволяя легко контролировать занос. Неудивительно, что многие эксперты называют нынешний EVO лучшим “драйвер’c каром” в мире из числа относительно недорогих, а недавнее решение японской компании прекратить его выпуск повергло поклонников в уныние.

Впрочем, нечто подобное можно испытать и за рулем куда более бюджетного “японца”, Nissan Juke, — разумеется, в полноприводной версии. Его трансмиссия, конечно, попроще, но в ней есть своя изюминка: в приводе задних колес используется не одна фрикционная муфта, а две, своя для каждого колеса, и все та же вездесущая электроника теоретически может передавать тягу, например, только на правую сторону.

При переднем расположении двигателя его коробка передач вынесена к задним колесам для лучшей развесовки (так называемая схема transaxle), поэтому к ней идет один карданный вал, а другой, практически такой же длины, для привода передних колес, проходит параллельно ему в обратном направлении. На какие только ухищрения не пойдешь ради скорости и удовольствия от вождения!

Разумеется, приведенными примерами список разнообразных систем полного привода, используемых японскими производителями, не исчерпывается: для внутреннего рынка очень многие легковые модели, которые мы получаем в переднеприводной ипостаси, выпускаются в диковинных для нас модификациях “4х4”.

Хотя в России, например, еще не так давно можно было приобрести седан Honda Legend с интеллектуальным приводом, распределявшим мощность, опять же, индивидуально для каждого колеса (впоследствии от этой системы отказались из-за дороговизны). Но практически все трансмиссии являются вариациями описанных схем, а отличия заключаются, в основном, в конструкции механизмов блокировки: это может быть электропривод или гидравлика, а у кого-то до сих пор в ходу старые добрые вискомуфты. Общая же тенденция — все более широкое применение электроники, от сложности и настроек которой сегодня зависит едва ли не больше, чем от механической составляющей.

Источник

Полный привод: постоянный и подключаемый. Как устроен и в чём разница?

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

какая муфта полного привода лучше. Смотреть фото какая муфта полного привода лучше. Смотреть картинку какая муфта полного привода лучше. Картинка про какая муфта полного привода лучше. Фото какая муфта полного привода лучше

Чтобы передвигаться по бездорожью и уверенно чувствовать себя в поворотах, нужно “грести” всеми четырьмя колёсами – это общеизвестно. Но как передать крутящий момент на них? Стоит ли это делать постоянно или только когда нужно и где кроются подводные камни?

Главное и неизменное “действующее лицо” всех систем полного привода — это раздаточная коробка: специальный агрегат, который получает крутящий момент от коробки передач и распределяет его на переднюю и заднюю оси. А вот методик распределения, равно как и схем компоновки, есть несколько.

Системы полного привода принято делить на три типа:

Постоянный полный привод(Full-time)
Плюсы:
надёжная “неубиваемая” конструкция;
возможность езды с полным приводом как по бездорожью, так и по асфальту.
Минусы:
сложность по сравнению с жестко подключаемым приводом;
большая масса;
сложность настройки управляемости;
повышенный расход топлива.
Первое, что приходит в голову, когда есть задача передать крутящий момент на две оси, — это жестко подсоединить их к раздатке железными трубами. Но вот незадача: при прохождении поворотов колеса автомобиля проходят разные пути.

Если жестко соединить оси, то какие-то колеса будут ехать, а какие-то — пробуксовывать. В грязи, когда покрытие мягкое, это нестрашно. Во времена Второй мировой, скажем, легендарные “Виллисы” спокойно ездили с жестко соединенными осями, потому как эксплуатировались исключительно на бездорожье. А вот если покрытие твердое, то эти пробуксовки будут порождать крутильные колебания и медленно, но верно разрушать трансмиссию.

Поэтому в раздаточной коробке автомобилей с постоянным полным приводом располагается межосевой дифференциал — механизм, который распределяет мощность между осями и позволяет им вращаться с разной скоростью. И если какое-то колесо замедляется, то обороты другого увеличиваются, но настолько же падает и крутящий момент на нем.

Все это здорово, пока мы едем по асфальту, а что делать, если задней осью мы застряли в луже? На передних колесах, которые будут стоять на твердой поверхности, будет момент но не будет оборотов, зато задние будут вращаться очень быстро, но момент на них будет маленьким. Маленькой будет и мощность на заднем колесе и ровно такую же мощность дифференциал подаст на передок. Буксовать в таком случае можно хоть целую вечность — все равно не сдвинешься.

Для таких случаев дифференциал снабжают блокировкой — когда она включена, обороты на всех колесах одинаковые, а момент зависит только от сцепления колес с дорогой.

За счет наличия дополнительных узлов (дифференциала и блокировки) вся система получается достаточно тяжелой и сложной. Кроме того, постоянная передача момента на все колеса увеличивает потери энергии, а значит, ухудшает динамику и увеличивает расход топлива.

Постоянный полный привод в автомобилестроении до сих пор используется, хотя в последнее время эту систему постепенно вытесняет полный привод по требованию, о котором речь пойдет дальше.

Жестко подключаемый (Part-time)
Плюсы:
надежная механика;
максимальная простота при высокой проходимости.
Минусы:
по асфальту с полным приводом ездить нельзя.
От дифференциала и блокировок можно и отказаться, при условии, что одна из осей будет временно отключаться. По такой логике работает система жестко подключаемого полного привода.

Оси между собой соединяются без дифференциала, и момент распределяется в строгом соотношении. Как следствие, высокая проходимость и минимум затрат.

Парт-тайм на сегодняшний день практически вымер и используется только на сугубо внедорожных автомобилях. Современному водителю пользоваться этой системой неудобно. Подключать ось можно только в неподвижном состоянии, чтобы не повредить механизмы. Ну а если после покатушек в лесу выехать на шоссе и забыть отключить полный привод, то есть риск загубить всю трансмиссию.

Полный привод с муфтой
Плюсы:
дешевизна и простота устройства;
малая масса;
возможность тонкой настройки системы.
Минусы:
слабая надежность и стойкость к перегрузкам;
нестабильность характеристик.
Жесткая блокировка дифференциала — это неплохо на бездорожье, но как заставить систему полного привода дозировать момент в динамике? Степень пробуксовки ведь всегда разная… Решение было найдено в середине 50-х годов.
Обычный механический дифференциал дополнили вязкостной муфтой (вискомуфтой). Вискомуфта — это деталь, в которой ряды лопаток, связанных с входным и выходным валами, вращаются в специальной жидкости. Входной и выходной валы свободно вращаются относительно друг друга, но секрет муфты именно в наполнителе, который при повышении температуры увеличивает свою вязкость.

При обычном движении, легких поворотах или проскальзывании колес муфта не препятствует взаимному перемещению лопаток, но как только разница в скорости вращения передних и задних колес вырастает, жидкость начинает интенсивно перемешиваться и нагреваться. При этом она становится вязкой и блокирует перемещения лопаток относительно друг друга. Чем больше разница, тем выше вязкость и степень блокировки.

Сегодня муфты используются как на схемах с постоянным полным приводом совместно с механическими дифференциалами, так и самостоятельно. Ведущим валом они соединены с раздаткой, а ведомым — с дополнительной осью. При необходимости, когда одна из осей буксовала, часть момента через муфту уходит на нее.

В поздних конструкциях муфт от жидкости отказались в пользу трущихся дисков, которые работают по такому же принципу, как фрикционное сцепление. При необходимости электроника “поджимает” их и начинает передачу момента. Управлять дозировкой момента автомобиль может самостоятельно, без участия водителя.

При всем удобстве муфты имеют ряд недостатков, основной из которых — слабая выносливость на серьезном бездорожье. Трущиеся диски от нагрузки перегреваются, и муфта уходит в аварийный режим. Поэтому эта система применяется в основном на компромиссных кроссоверах и легковых автомобилях, где полный привод нужен не для преодоления буераков, а для лучшей управляемости.
Что дальше?
Дальнейшая эволюция систем полного привода, по всей видимости, будет связана с электромоторами. Первый электромобиль с двигателем на каждом колесе показал еще на Всемирной выставке в Париже 1900 года Фердинанд Порше. Тогда это был, как бы сейчас сказали, “нежизнеспособный концепт-кар”. Моторы были слишком тяжелые, а конструкция — дорогой. Сейчас у такой схемы перспектив явно больше.

Есть потенциал и у гибридной схемы, где одна ось приводится в движение двигателем внутреннего сгорания, а вторая — элекродвигателем. Впрочем, если говорить о настоящих внедорожниках, то никакие электроинновации и фрикционные муфты пока не заменят дешевой, простой и выносливой механики.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *