какая нулевая гипотеза проверяется при помощи критерия фишера
6.1 Параметрические критерии
В группу параметрических критериев методов математической статистики входят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о принадлежности двух выборок одной совокупности. Эти методы основываются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.
6.1.1 Методы проверки выборки на нормальность
Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:
1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;
2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.
3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;
4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:
а) — к интервалу должно относиться около 25% частоты совокупности,
— к интервалу должно относиться около 50% частоты совокупности,
— к интервалу должно относиться около 75% частоты совокупности,
— к интервалу должно относиться около 100% частоты совокупности.
6.1.2 Критерий Стьюдента ( t-критерий)
Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».
При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанныхдвухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.
Во втором случае, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.
а) случай независимых выборок
Статистика критерия для случая несвязанных, независимых выборок равна:
— средние арифметические в экспериментальной и контрольной группах,
— стандартная ошибка разности средних арифметических. Находится из формулы:
где n 1 и n 2 соответственно величины первой и второй выборки.
Если n 1= n 2, то стандартная ошибка разности средних арифметических будет считаться по формуле:
где n величина выборки.
Подсчет числа степеней свободы осуществляется по формуле:
Далее необходимо сравнить полученное значение t эмп с теоретическим значением t—распределения Стьюдента (см. приложение к учебникам статистики). Если t эмп t крит, то гипотеза H 0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.
Пример 1. В двух группах учащихся — экспериментальной и контрольной — получены следующие результаты по учебному предмету (тестовые баллы; см. табл. 1).
Таблица 1. Результаты эксперимента
Первая группа (экспериментальная) N 1=11 человек
Вторая группа (контрольная)
12 14 13 16 11 9 13 15 15 18 14
13 9 11 10 7 6 8 10 11
Общее количество членов выборки: n 1=11, n 2=9.
Расчет средних арифметических: Хср=13,636; Y ср=9,444
Стандартное отклонение: s x=2,460; s y =2,186
По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:
Считаем статистику критерия:
Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).
Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное суждение в пяти случаях из ста (уровень значимости=5 % или 0,05).
Если полученное в эксперименте эмпирическое значение t превышает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе экспериментального обучения.
Здесь могут возникнуть такие вопросы:
1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.
2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.
3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав
средней арифметической экспериментальной группы, a
Отсюда следует вывод, что новый метод пока не проявил себя с хорошей стороны по разным, возможно, причинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о преимуществе традиционного метода.
б) случай связанных (парных) выборок
В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.
Вычисление значения t осуществляется по формуле:
Sd вычисляется по следующей формуле:
Если t эмп t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.
Пример 2. Изучался уровень ориентации учащихся на художественно-эстетические ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились беседы, выставки детских рисунков, были организованы посещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических соображений в таблице 2 приводятся результаты небольшого числа испытуемых.
Таблица 2. Результаты эксперимента
до начала эксперимента (Х)
Вначале произведем расчет по формуле:
Затем применим формулу (6), получим:
И, наконец, следует применить формулу (5). Получим:
Число степеней свободы: k =10-1=9 и по таблице Приложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтернативной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.
6.1.3 F — критерий Фишера
Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух независимых выборок. Для вычисления Fэмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фишера такова:
— дисперсии первой и второй выборки соответственно.
Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значение Fэмп всегда будет больше или равно единице.
Число степеней свободы определяется также просто:
В Приложении 1 критические значения критерия Фишера находятся по величинам k 1 (верхняя строчка таблицы) и k 2 (левый столбец таблицы).
Если t эмп> t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.
Пример 3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.
Решение. Для критерия Фишера необходимо сравнить дисперсии тестовых оценок в обоих классах. Результаты тестирования представлены в таблице:
Рассчитав дисперсии для переменных X и Y, получаем:
Тогда по формуле (8) для расчета по F критерию Фишера находим:
6.2 Непараметрические критерии
Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.
6.2.1 Критерий знаков ( G-критерий)
Критерий предназначен для сравнения состояния некоторого свойства у членов двух зависимых выборок на основе измерений, сделанных по шкале не ниже ранговой.
Нулевая гипотеза формулируются следующим образом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно различны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.
Статистика критерия (Т) определяется следующим образом:
Пример 4. Учащиеся выполняли контрольную работу, направленную на проверку усвоения некоторого понятия. Пятнадцати учащимся затем предложили электронное пособие, составленное с целью формирования данного понятия у учащихся с низким уровнем обучаемости. После изучения пособия учащиеся снова выполняли ту же контрольного работу, которая оценивалась по пятибалльной системе.
Результаты двукратного выполнения работы представляют измерения по шкале порядка (пятибалльная шкала). В этих условиях возможно применение знакового критерия для выявления тенденции изменения состояния знаний учащихся после изучения пособия, так как выполняются все допущения этого критерия.
Результаты двукратного выполнения работы (в баллах) 15 учащимися запишем в форме таблицы (см. табл. 1).
Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей
Главная > Документ
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
Критерий Фишера
Критерий Фишера применяется при проверке гипотезы о равенстве дисперсий двух генеральных совокупностей, распределенных по нормальному закону. Он является параметрическим критерием.
F-критерий Фишера называют дисперсионным отношением, так как он формируется как отношение двух сравниваемых несмещенных оценок дисперсий.
Пусть в результате наблюдений получены две выборки. По ним вычислены дисперсии и
, имеющие
и
степеней свободы. Будем считать, что первая выборка взята из генеральной совокупности с дисперсией
, а вторая – из генеральной совокупности с дисперсией
. Выдвигается нулевая гипотеза о равенстве двух дисперсий, т.е. H 0 :
или
. Для того, чтобы отвергнуть эту гипотезу нужно доказать значимость различия при заданном уровне значимости
.
Значение критерия вычисляется по формуле:
.
Очевидно, что при равенстве дисперсий величина критерия будет равна единице. В остальных случаях она будет больше (меньше) единицы.
Критерий имеет распределение Фишера . Критерий Фишера – двусторонний критерий, и нулевая гипотеза
отвергается в пользу альтернативной
если
. Здесь
, где
– объем первой и второй выборки соответственно.
В системе STATISTICA реализован односторонний критерий Фишера, т.е. в качестве всегда берут максимальную дисперсию. В этом случае нулевая гипотеза отвергается в пользу альтернативы
, если
.
Вычислим (в числителе должна быть большая дисперсия),
. По таблицам ( STATISTICA – Probability Distribution Calculator ) находим
, которое меньше вычисленного, следовательно нулевая гипотеза должна быть отвергнута в пользу альтернативы
. Это заключение может не удовлетворить исследователя, поскольку его интересует истинная величина отношения
(у нас в числителе всегда большая дисперсия). При проверке одностороннего критерия получим
, что меньше вычисленного выше значения. Итак, нулевая гипотеза должна быть отвергнута в пользу альтернативы
.
Критерий Фишера в программе STATISTICA в среде Windows
Для примера проверки гипотезы (критерий Фишера) используем (создаем) файл с двумя переменными (fisher.sta):
Рис. 1. Таблица с двумя независимыми переменными
Чтобы проверить гипотезу необходимо в базовой статистике ( Basic Statistics and Tables ) выбрать проверку по Стьюденту для независимых переменных. ( t-test, independent, by variables ).
Рис. 2. Проверка параметрических гипотез
Рис. 3. Результаты проверки гипотезы (F- критерий)
Используя Probability Calculator и задав значение параметров можно построить график распределения Фишера с пометкой вычисленного значения.
Рис. 4. Область принятия (отклонения) гипотезы (F- критерий)
Источники.
Проверка гипотез об отношениях двух дисперсий
Лекция 6. :8080/resources/math/mop/lections/lection_6.htm
F – критерий Фишера
Теория и практика вероятностно-статистических исследований.
Библиотека постов MEDSTATISTIC об анализе медицинских данных
Ещё больше полезной информации в нашем блоге в Инстаграм @medstatistic
Критерии и методы
ТОЧНЫЙ КРИТЕРИЙ ФИШЕРА
– это критерий, который используется для сравнения двух и более относительных показателей, характеризующих частоту определенного признака, имеющего два значения. Исходные данные для расчета точного критерия Фишера обычно группируются в виде четырехпольной таблицы, но могут быть представлены и многопольной таблицей.
1. История разработки критерия
Впервые критерий был предложен Рональдом Фишером в его книге «Проектирование экспериментов». Это произошло в 1935 году. Сам Фишер утверждал, что на эту мысль его натолкнула Муриэль Бристоль. В начале 1920-х годов Рональд, Муриэль и Уильям Роуч находились в Англии на опытной сельскохозяйственной станции. Муриэль утверждала, что может определить, в какой последовательности наливали в ее чашку чай и молоко. На тот момент проверить правильность ее высказывания не представлялось возможным.
Это дало толчок идее Фишера о «нуль гипотезе». Целью стала не попытка доказать, что Муриэль может определить разницу между по-разному приготовленными чашками чая. Решено было опровергнуть гипотезу, что выбор женщина делает наугад. Было определено, что нуль-гипотезу нельзя ни доказать, ни обосновать. Зато ее можно опровергнуть во время экспериментов.
Было приготовлено 8 чашек. В первые четыре налито молоко сначала, в другие четыре – чай. Чашки были помешаны. Бристоль предложили опробовать чай на вкус и разделить чашки по методу приготовления чая. В результате должно было получиться две группы. История говорит, что эксперимент прошел удачно.
Благодаря тесту Фишера вероятность того, что Бристоль действует интуитивно, была уменьшена до 0.01428. То есть, верно определить чашку можно было в одном случае из 70. Но все же нет возможности свести к нулю шансы того, что мадам определяет случайно. Даже если увеличивать число чашек.
Эта история дала толчок развитию «нуль гипотезы». Тогда же был предложен точный критерий Фишера, суть которого в переборе всех возможных комбинаций зависимой и независимой переменных.
2. Для чего используется точный критерий Фишера?
Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.
Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.
3. В каких случаях можно использовать точный критерий Фишера?
Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.
4. Как рассчитать точный критерий Фишера?
Вначале составляем четырехпольную таблицу сопряженности:
Исход есть (Наличие ВПР) | Исхода нет (Отсутствие ВПР) | Всего | |
Фактор риска есть (Курящие) | A = 10 | B = 70 | (A + B) = 80 |
Фактор риска отсутствует (Некурящие) | C = 2 | D = 88 | (C + D) = 90 |
Всего | (A + C) = 12 | (B + D) = 158 | (A + B + C + D) = 170 |
Точный критерий Фишера рассчитывается по следующей формуле:
В результате вычислений находим, что P = 0,0137.
5. Как интерпретировать значение точного критерия Фишера?
Достоинством метода является соответствие полученного критерия точному значению уровня значимости p. То есть, полученное в нашем примере значение 0,0137 и есть уровень значимости различий сравниваемых групп по частоте развития ВПР плода. Необходимо лишь сопоставить данное число с критическим уровнем значимости, обычно принимаемым в медицинских исследованиях за 0,05.
6.1 Параметрические критерии
В группу параметрических критериев методов математической статистики входят методы для вычисления описательных статистик, построения графиков на нормальность распределения, проверка гипотез о принадлежности двух выборок одной совокупности. Эти методы основываются на предположении о том, что распределение выборок подчиняется нормальному (гауссовому) закону распределения. Среди параметрических критериев статистики нами будут рассмотрены критерий Стьюдента и Фишера.
6.1.1 Методы проверки выборки на нормальность
Чтобы определить, имеем ли мы дело с нормальным распределением, можно применять следующие методы:
1) в пределах осей можно нарисовать полигон частоты (эмпирическую функцию распределения) и кривую нормального распределения на основе данных исследования. Исследуя формы кривой нормального распределения и графика эмпирической функции распределения, можно выяснить те параметры, которыми последняя кривая отличается от первой;
2) вычисляется среднее, медиана и мода и на основе этого определяется отклонение от нормального распределения. Если мода, медиана и среднее арифметическое друг от друга значительно не отличаются, мы имеем дело с нормальным распределением. Если медиана значительно отличается от среднего, то мы имеем дело с асимметричной выборкой.
3) эксцесс кривой распределения должен быть равен 0. Кривые с положительным эксцессом значительно вертикальнее кривой нормального распределения. Кривые с отрицательным эксцессом являются более покатистыми по сравнению с кривой нормального распределения;
4) после определения среднего значения распределения частоты и стандартного oтклонения находят следующие четыре интервала распределения сравнивают их с действительными данными ряда:
а) — к интервалу должно относиться около 25% частоты совокупности,
б) — к интервалу должно относиться около 50% частоты совокупности,
в) — к интервалу должно относиться около 75% частоты совокупности,
г) — к интервалу должно относиться около 100% частоты совокупности.
6.1.2 Критерий Стьюдента ( t-критерий)
Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».
При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.
Во втором случае, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.
Статистика критерия для случая несвязанных, независимых выборок равна:
(1)
где ,
— средние арифметические в экспериментальной и контрольной группах,
— стандартная ошибка разности средних арифметических. Находится из формулы:
, (2)
где n 1 и n 2 соответственно величины первой и второй выборки.
Если n 1= n 2, то стандартная ошибка разности средних арифметических будет считаться по формуле:
(3)
где n величина выборки.
Подсчет числа степеней свободы осуществляется по формуле:
Далее необходимо сравнить полученное значение t эмп с теоретическим значением t—распределения Стьюдента (см. приложение к учебникам статистики). Если t эмп t крит, то гипотеза H 0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.
Таблица 1. Результаты эксперимента
Первая группа (экспериментальная) N 1=11 человек
Вторая группа (контрольная)
12 14 13 16 11 9 13 15 15 18 14
13 9 11 10 7 6 8 10 11
Общее количество членов выборки: n 1=11, n 2=9.
Расчет средних арифметических: Хср=13,636; Y ср=9,444
Стандартное отклонение: s x=2,460; s y =2,186
По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:
Считаем статистику критерия:
Сравниваем полученное в эксперименте значение t с табличным значением с учетом степеней свободы, равных по формуле (4) числу испытуемых минус два (18).
Табличное значение tкрит равняется 2,1 при допущении возможности риска сделать ошибочное суждение в пяти случаях из ста (уровень значимости=5 % или 0,05).
Если полученное в эксперименте эмпирическое значение t превышает табличное, то есть основания принять альтернативную гипотезу (H1) о том, что учащиеся экспериментальной группы показывают в среднем более высокий уровень знаний. В эксперименте t=3,981, табличное t=2,10, 3,981>2,10, откуда следует вывод о преимуществе экспериментального обучения.
Здесь могут возникнуть такие вопросы:
1. Что если полученное в опыте значение t окажется меньше табличного? Тогда надо принять нулевую гипотезу.
2. Доказано ли преимущество экспериментального метода? Не столько доказано, сколько показано, потому что с самого начала допускается риск ошибиться в пяти случаях из ста (р=0,05). Наш эксперимент мог быть одним из этих пяти случаев. Но 95% возможных случаев говорит в пользу альтернативной гипотезы, а это достаточно убедительный аргумент в статистическом доказательстве.
3. Что если в контрольной группе результаты окажутся выше, чем в экспериментальной? Поменяем, например, местами, сделав средней арифметической экспериментальной группы, a
— контрольной:
Отсюда следует вывод, что новый метод пока не проявил себя с хорошей стороны по разным, возможно, причинам. Поскольку абсолютное значение 3,9811>2,1, принимается вторая альтернативная гипотеза (Н2) о преимуществе традиционного метода.
В случае связанных выборок с равным числом измерений в каждой можно использовать более простую формулу t-критерия Стьюдента.
Вычисление значения t осуществляется по формуле:
(5)
Sd вычисляется по следующей формуле:
(6)
Если t эмп t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.
Пример 2. Изучался уровень ориентации учащихся на художественно-эстетические ценности. С целью активизации формирования этой ориентации в экспериментальной группе проводились беседы, выставки детских рисунков, были организованы посещения музеев и картинных галерей, проведены встречи с музыкантами, художниками и др. Закономерно встает вопрос: какова эффективность проведенной работы? С целью проверки эффективности этой работы до начала эксперимента и после давался тест. Из методических соображений в таблице 2 приводятся результаты небольшого числа испытуемых. [2]
Таблица 2. Результаты эксперимента
до начала эксперимента (Х)
Вначале произведем расчет по формуле:
Затем применим формулу (6), получим:
И, наконец, следует применить формулу (5). Получим:
Число степеней свободы: k =10-1=9 и по таблице Приложения 1 находим tкрит =2.262, экспериментальное t=6,678, откуда следует возможность принятия альтернативной гипотезы (H1) о достоверных различиях средних арифметических, т. е. делается вывод об эффективности экспериментального воздействия.
6.1.3 F — критерий Фишера
Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух независимых выборок. Для вычисления Fэмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фишера такова:
(8)
где — дисперсии первой и второй выборки соответственно.
Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значение Fэмп всегда будет больше или равно единице.
Число степеней свободы определяется также просто:
В Приложении 1 критические значения критерия Фишера находятся по величинам k 1 (верхняя строчка таблицы) и k 2 (левый столбец таблицы).
Если t эмп> t крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная.
Пример 3. В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. [3] Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос — есть ли различия в степени однородности показателей умственного развития между классами.
Решение. Для критерия Фишера необходимо сравнить дисперсии тестовых оценок в обоих классах. Результаты тестирования представлены в таблице:
Рассчитав дисперсии для переменных X и Y, получаем:
Тогда по формуле (8) для расчета по F критерию Фишера находим:
6.2 Непараметрические критерии
Сравнивая на глазок (по процентным соотношениям) результаты до и после какого-либо воздействия, исследователь приходит к заключению, что если наблюдаются различия, то имеет место различие в сравниваемых выборках. Подобный подход категорически неприемлем, так как для процентов нельзя определить уровень достоверности в различиях. Проценты, взятые сами по себе, не дают возможности делать статистически достоверные выводы. Чтобы доказать эффективность какого-либо воздействия, необходимо выявить статистически значимую тенденцию в смещении (сдвиге) показателей. Для решения подобных задач исследователь может использовать ряд критериев различия. Ниже будет рассмотрены непараметрические критерии: критерий знаков и критерий хи-квадрат.
6.2.1 Критерий знаков ( G-критерий)
Критерий предназначен для сравнения состояния некоторого свойства у членов двух зависимых выборок на основе измерений, сделанных по шкале не ниже ранговой.
Нулевая гипотеза формулируются следующим образом: в состоянии изучаемого свойства нет значимых различий при первичном и вторичном измерениях. Альтернативная гипотеза: законы распределения величин X и У различны, т. е. состояния изучаемого свойства существенно различны в одной и той же совокупности при первичном и вторичном измерениях этого свойства.
Статистика критерия (Т) определяется следующим образом:
Пример 4. Учащиеся выполняли контрольную работу, направленную на проверку усвоения некоторого понятия. Пятнадцати учащимся затем предложили электронное пособие, составленное с целью формирования данного понятия у учащихся с низким уровнем обучаемости. После изучения пособия учащиеся снова выполняли ту же контрольного работу, которая оценивалась по пятибалльной системе.
Результаты двукратного выполнения работы представляют измерения по шкале порядка (пятибалльная шкала). В этих условиях возможно применение знакового критерия для выявления тенденции изменения состояния знаний учащихся после изучения пособия, так как выполняются все допущения этого критерия.
Результаты двукратного выполнения работы (в баллах) 15 учащимися запишем в форме таблицы (см. табл. 1). [4]