какая ось у синуса

Как запомнить тригонометрический круг?

Лучший способ запомнить новую информацию в математике – это понять логику. Поэтому в этой статье я расскажу вам логику тригонометрического круга.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Дальше я сосредоточусь на том, как запомнить расположение чисел на осях синуса, косинуса, тангенса и котангенса.

Как запомнить какой точке какой синус и косинус соответствует?

— косинус равен абсциссе точки на числовой окружности
— синус равен ординате точки на числовой окружности.

Поэтому положительные значения косинусов и синусов расположены там же, где соответственно «иксы» и «игреки» положительны. Аналогично с отрицательными (на картинке ниже: оранжевые – плюс, синие – минус).

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Шаг 2. Вспомните, что радиус тригонометрического круга равен \(1\), а это значит, что единицы и минус единицы на осях будут там, где круг пересечет оси.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Шаг 3. Так как ось котангенсов — это скопированная ось косинусов сдвинутая на 1 вверх, то и положительные отрицательные части осей там же где и на оси косинусов. Аналогично с осью тангенсов и синусов.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Шаг 4. Значение «\(1\)» на оси тангенсов и котангенсов находятся на одном уровне с единицей на оси косинусов и синусов. Аналогично, \(-1\) находятся на одном уровне с \(-1\) на оси синусов и косинусов.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Шаг 5. Дальше стоит понять, что \(±\frac<1><\sqrt<3>>\) находится ближе к \(0\), чем \(±\sqrt<3>\).

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Шаг 6. \(±\sqrt<3>\) – это самые крайние точки, которые мы ставим на осях.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Опять же, подписывать все значения на тригонометрическом круге, и расставлять все числа на осях ни к чему. Достаточно нанести лишь те значения, которые надо найти.

Пример (ЕГЭ). Найдите значение выражения \(36\sqrt<6>\, tg\,\frac<π> <6>sin⁡\,\frac<π><4>\).
Решение:

Источник

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть

Источник

Синус, косинус

До сих пор мы измеряли углы только в градусах. Оказывается, есть и другая система измерения углов – радианы.

По определению, 1 радиан – это центральный угол, опирающийся на дугу, длина которой равна радиусу. Вот он, на рисунке.

Вспомним, что полный круг – это 360 градусов. Длина окружности равна 2πr. Составим пропорцию. Длина окружности так относится к длине дуги на нашем рисунке, как 360°- к величине угла, опирающегося на дугу на рисунке, то есть к углу в 1 радиан.

Слева в нашей пропорции углы, справа – длина полного круга и длина дуги на нашем рисунке.

Из этой пропорции получаем, что 360° = 2π радиан. Значит, полный круг – это 2π радиан. Тогда полкруга – это π радиан, четверть круга (то есть 90°) – это π/2 радиан.

Любой угол, выраженный в градусах, можно перевести в радианы. И наоборот,

Любой угол, выраженный в градусах, можно перевести в радианы. И наоборот, 1 радиан приблизительно равен 57 градусов.

Нарисуем единичную окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями OX и OY, в которой мы привыкли рисовать графики функций.

Договоримся отсчитывать углы от положительного направления оси ОХ против часовой стрелки.

Мы помним, что полный круг — это 360 градусов. Тогда точка с координатами (1;0) соответствует углу в 0 градусов. Точка с координатами (-1; 0) отвечает углу в 180 градусов, точка с координатами (0;1) — углу в 90 градусов. Каждому углу от нуля до 360 градусов соответствует точка на единичной окружности. Обратите внимание,что на нашем тригонометрическом круге углы отмечены и в градусах, и в радианах.

Источник

14. Свойства функций синуса, косинуса, тангенса

и котангенса и их графики

14.1. СВОЙСТВА ФУНКЦИИ y = sin x И ЕЕ ГРАФИК

График функции y = sin x (синусоида)

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Свойства функции y = sin x

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики:

1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями

координат; 6) промежутки знакопостоянства; 7) промежутки возрастания и убывания * ;8) наибольшее и наименьшее

З а м е ч а н и е. Абсциссы точек пересечения графика функции с осью Ох

(то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордина-

та соответствующей точки единичной окружности какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

(рис. 79). Поскольку ординату можно найти для

любой точки единичной окружности (в силу того,

что через любую точку окружности всегда можно

провести единственную прямую, перпендикуляр-

ную оси ординат), то область определения функции

y = sin x — все действительные числа. Это можно за-

писать так: D (sin x) = R.

Для точек единичной окружности ординаты нахо-

дятся в промежутке [–1; 1] и принимают все значения

от –1 до 1, поскольку через любую точку отрезка [–1; 1]

оси ординат (который является диаметром единичной

окружности) всегда можно провести прямую, перпендикулярную оси орди-

нат, и получить точку окружности, которая имеет рассматриваемую орди-

нату. Таким образом, для функции y = sin x область значений: y ∈ [–1; 1].

Это можно записать так: E (sin x) = [–1; 1].

Как видим, наибольшее значение функции sin x равно единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окружности является точка A, то есть при какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Наименьшее значение функции sin x равно минус единице. Это значение

достигается только тогда, когда соответствующей точкой единичной окружности является точка B, то есть

при какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

поэтому ее график симметричен относительно начала координат.

В § 13 было обосновано также, что синус — периодическая функция с наименьшим положительным периодом

k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат,

напомним, что на оси Oy значение x = 0. Тогда соответствующее значение

y = sin 0 = 0, то есть график функции y = sin x проходит через начало координат.

На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при

которых sin x, то есть ордината соответствующей точки единичной окруж­

ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж-

ности будут выбраны точки C или D, то есть при x = πk, k ∈ Z (см. рис. 79).

функции синус положительны (то есть ордината соответствующей точки

единичной окружности положительна) в I и II четвертях (рис. 80). Таким

образом, sin x > 0 при всех x ∈ (0; π), а также, учитывая период, при всех

x ∈ (2πk; π + 2πk), k ∈ Z.

Значения функции синус отрицательны (то есть ордината соответствую-

щей точки единичной окружности отрицательна) в III и IV четвертях, поэто-

Промежутки возрастания и убывания

Учитывая периодичность функции sin x с периодом T = 2π, достаточно

исследовать ее на возрастание и убывание на любом промежутке длиной

2π, например на промежутке какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

то при увеличении аргумента x (x 2 > x 1 ) ордината соответствующей точки единичной окружности увеличивается (то есть

sin x 2 > sin x 1 ), следовательно, на этом промежутке функция sin x возрастает. Учитывая периодичность функции sin x,

делаем вывод, что она такж е возрастает на каждом из промежутков какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Если x ∈ какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса(рис. 81, б), то при увеличении аргумента x (x 2 > x 1 ) ордината соответствующей точки единичной

окружности уменьшается (то есть sin x 2 1 ), таким образом, на этом промежутке функция sin x убывает. Учитывая

периодичность функции sin x, делаем вывод, что она также убывает на каждом из промежутков какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Проведенное исследование позволяет обоснованно построить график функции y = sin x. Учитывая периодичность этой

функции (с периодом 2π), д о статочно сначала построить график на любом промежутке длиной 2π, на пример на

промежутке [–π; π]. Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината

соответствующей точки единичной окружности. На рисунке 82 показано построение графика функции y = sin x на

промежутке [0; π]. Учитывая нечетность функции sin x (ее график симметричен относительно начала координат), для

построения графика на промежутке [–π; 0] отображаем полученную кривую симметрич но относительно начала координат

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Поскольку мы построили график на

промежутке длиной 2π, то, учитывая какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

периодичность синуса (с периодом 2π),

повторяем вид графика на каждом про-

межутке длиной 2π (то есть переносим па-

раллельно график вдоль оси Ох на 2πk,

где k — целое число).

Получаем график, который называется

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

З а м е ч а н и е. Тригонометрические функции широко применяются в ма тематике, физике и технике. Например,

множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п.,

описываются функцией, которая задается формулой y = A sin (ωх + φ). Та кие процессы называют гармоническими

колебаниями. График функции y = A sin (ωx + φ) можно получить из синусоиды y = sin х сжатием или растяжением ее вдоль

координатных осей и параллельным пере носом вдоль оси Ох. Чаще всего гармоническое колебание является функцией

времени t. Тогда оно задается формулой y = A sin (ωt + φ), где А — амплитуда колебания, ω — частота, φ — начальная

фаза, какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

14.2. СВОЙСТВА ФУНКЦИИ y = cos x И ЕЕ ГРАФИК

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Объяснение и обоснование

Напомним, что значение косинуса — это абсцис-

са соответствующей точки единичной окружности какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

(рис. 85). Поскольку абсциссу можно найти для лю-

бой точки единичной окружности (в силу того, что

через любую точку окружности, всегда можно про-

вести единственную прямую, перпендикулярную оси

абсцисс), то область определения функции y = cos x —

все действительные числа. Это можно записать так:

D (cos x) = R.

Для точек единичной окружности абсциссы нахо-

дятся в промежутке [–1; 1] и принимают все значе-

ния от –1 до 1, поскольку через любую точку отрезка [–1; 1] оси абсцисс (который является диаметром единичной

всегда можно провести прямую, перпендикулярную оси абсцисс, и получить

точку окружности, которая имеет рассматриваемую абсциссу. Следователь но, область значений функции y = cos x:

y ∈ [–1; 1]. Это можно записать так: E (cos x) = [–1; 1]. Как видим, наибольшее значение функции cos x равно единице. Это

зна чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при

x = 2πk, k ∈ Z. Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда

соответствующей точкой единичной окруж ности является точка B, то есть при x = π + 2πk, k ∈ Z.

Как было показано в § 13, косинус — четная функция : cos (–x) = cos x, поэтому ее график симметричен относительно оси

Оу. В § 13 было обосновано также, что косинус — периодическая функция с наименьшим положительным периодом

T = 2π: cos (x + 2π) = cos x. Таким об разом, через промежутки длиной 2π вид графика функции cos x повторяется.

соответствующее значение y = cos 0 = 1. На оси Ox значение y = 0. Поэтому необходимо найти такие значения x, при

которых cos x, то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только

тогда, когда на единичной окружности будут выбраны точки C или D, то есть при какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции косинус положительны (то есть абсцисса соответствующей точки

единичной окружности положительна) в I и IV четвертях (рис. 86). Следова-

тельно, cos x > 0 при x ∈ (-П/2; П/2) а также, учитывая период, при всех какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Значения функции косинус отрицательны (то есть абсцисса соответству-

ющей точки единичной окружности отрицательна) во ІІ и ІІІ четвертях,

поэтому cos x какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Промежутки возрастания и убывания

Учитывая периодичность функции cos x (T = 2π), достаточно исследовать

ее на возрастание и убывание на любом промежутке длиной 2π, например

на промежутке [0; 2π].

Если x ∈ [0; π] (рис. 87, а), то при увеличении аргумента x (x 2 > x 1 ) абсцисса соответствующей точки единичной

окружности уменьшается (то есть cos x 2 1 ), следовательно, на этом промежутке функция cos x убывает. Учитывая

периодичность функции cos x, делаем вывод, что она также убывает на каждом из промежутков [2πk; π + 2πk], k ∈ Z.

Если x ∈ [π; 2π] (рис. 87, б), то при увеличении аргумента x (x 2 > x 1 ) аб-

сцисса соответствующей точки единичной окружности увеличивается (то

есть cos x 2 >cos x 1 ), таким образом, на этом промежутке функция cos x

возрастает. Учитывая периодичность функции cos x, делаем вывод, что

она возрастает также на каждом из промежутков [π + 2πk; 2π + 2πk], k ∈ Z.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Проведенное исследование позволяет построить график функции y = cos x

аналогично тому, как был построен график функ- какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

ции y = sin x. Но график функции у = cos x можно

также получить с помощью геометрических преоб-

разований графика функции у = sin х, используя

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Эту формулу можно обосновать, например, так.

Рассмотрим единичную окружность (рис. 88), отметим на ней точки какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Источник

Какая ось у синуса

Прежде чем перейти к этому разделу, напомним определения синуса и косинуса, изложенные в учебнике геометрии 7-9 классов.

— Синус острого угла t прямоугольного треугольника равен отношению противолежащего катета к гипотенузе (рис.1):

— Косинус острого угла t прямоугольного треугольника равен отношению прилежащего катета к гипотенузе (рис.1):

Эти определения относятся к прямоугольному треугольнику и являются частными случаями тех определений, которые представлены в данном разделе.

Поместим тот же прямоугольный треугольник в числовую окружность (рис.2).

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Мы видим, что катет b равен определенной величине y на оси Y (оси ординат), катет а равен определенной величине x на оси X (оси абсцисс). А гипотенуза с равна радиусу окружности (R).

Таким образом, наши формулы обретают иной вид.

Так как b = y, a = x, c = R, то:

Кстати, тогда иной вид обретают, естественно, и формулы тангенса и котангенса.

Так как tg t = b/a, ctg t = a/b, то, верны и другие уравнения:

Но вернемся к синусу и косинусу. Мы имеем дело с числовой окружностью, в которой радиус равен 1. Значит, получается:

Так мы приходим к третьему, более простому виду тригонометрических формул.

Эти формулы применимы не только к острому, но и к любому другому углу (тупому или развернутому).

Определения и формулы cos t, sin t, tg t, ctg t.

Косинусом числа t числовой окружности называют абсциссу этого числа:

cos t = x

Синус числа t – это его ордината:

sin t = y

Тангенс числа t – это отношение синуса к косинусу:

sin t π
tg t = ———, где t ≠ — + πk
cos t 2

Котангенс числа t – это отношение косинуса к синусу:

cos t
ctg t = ———,
где t ≠ πk
sin t

Из формул тангенса и котангенса следует еще одна формула:

sin t cos t πk
tg t · ctg t = ——— · ——— = 1, при t ≠ ——
cos t sin t 2

Уравнения числовой окружности.

Из предыдущего раздела мы знаем одно уравнение числовой окружности:

Но поскольку x = cos t, а y = sin t, то получается новое уравнение:

cos 2 t + sin 2 t = 1

Знаки синуса, косинуса, тангенса и котангенса в четвертях окружности:

1-я четверть

2-я четверть

3-я четверть

4-я четверть

Косинус и синус основных точек числовой окружности:

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

Как запомнить значения косинусов и синусов основных точек числовой окружности.

Прежде всего надо знать, что в каждой паре чисел значения косинуса стоят первыми, значения синуса – вторыми.

1) Обратите внимание: при всем множестве точек числовой окружности мы имеем дело лишь с пятью числами (в модуле):

2) Начнем с целых чисел 0 и 1. Они находятся только на осях координат.

Не надо учить наизусть, где, к примеру, косинус в модуле имеет единицу, а где 0.

На концах оси косинусов (оси х), разумеется, косинусы равны модулю 1, а синусы равны 0.

На концах оси синусов (оси у) синусы равны модулю 1, а косинусы равны 0.

Теперь о знаках. Ноль знака не имеет. Что касается 1 – тут просто надо вспомнить самую простую вещь: из курса 7 класса вы знаете, что на оси х справа от центра координатной плоскости – положительные числа, слева – отрицательные; на оси у вверх от центра идут положительные числа, вниз – отрицательные. И тогда вы не ошибетесь со знаком 1.

3) Теперь перейдем к дробным значениям.

— Во всех знаменателях дробей – одно и то же число 2. Уже не ошибемся, что писать в знаменателе.

— В серединах четвертей косинус и синус имеют абсолютно одинаковое значение по модулю: √2/2. В каком случае они со знаком плюс или минус – см.таблицу выше. Но вряд ли вам нужна такая таблица: вы знаете это из того же курса 7 класса.

— Все ближайшие к оси х точки имеют абсолютно одинаковые по модулю значения косинуса и синуса: (√3/2; 1/2).

— Значения всех ближайших к оси у точек тоже абсолютно идентичны по модулю – причем в них те же числа, только они «поменялись» местами: (1/2; √3/2).

Теперь о знаках – тут свое интересное чередование (хотя со знаками, полагаем, вы должны легко разобраться и так).

Если в первой четверти значения и косинуса, и синуса со знаком плюс, то в диаметрально противоположной (третьей) они со знаком минус.

Если во второй четверти со знаком минус только косинусы, то в диаметрально противоположной (четвертой) – только синусы.

Осталось только напомнить, что в каждом сочетании значений косинуса и синуса первое число – это значение косинуса, второе число – значение синуса.

— Обратите внимание еще на одну закономерность: синус и косинус всех диаметрально противоположных точек окружности абсолютно равны по модулю. Возьмем, к примеру, противоположные точки π/3 и 4π/3:

Различаются значения косинусов и синусов двух противоположных точек только по знаку. Но и здесь есть своя закономерность: синусы и косинусы диаметрально противоположных точек всегда имеют противоположные знаки.

Важно знать :

В порядке убывания получается такое чередование значений:

√3 √2 1 1 √2 √3
1; ——; ——; —; 0; – —; – ——; – ——; –1
2 2 2 2 2 2

Возрастают они строго в обратном порядке.

Поняв эту простую закономерность, вы научитесь довольно легко определять значения синуса и косинуса.

Тангенс и котангенс основных точек числовой окружности.

какая ось у синуса. Смотреть фото какая ось у синуса. Смотреть картинку какая ось у синуса. Картинка про какая ось у синуса. Фото какая ось у синуса

ПРИМЕЧАНИЕ : В некоторых таблицах значения тангенса и котангенса, равные модулю √3/3, указаны как 1/√3. Ошибки тут нет, так как это равнозначные числа. Если числитель и знаменатель числа 1/√3 умножить на √3, то получим √3/3.


Как запомнить значение тангенсов и котангенсов основных точек числовой окружности.

Здесь такие же закономерности, что и с синусами и косинусами. И чисел тут всего четыре (в модуле): 0, √3/3, 1, √3.

На концах осей координат – прочерки и нули. Прочерки означают, что в данных точках тангенс или котангенс не имеют смысла.

Как запомнить, где прочерки, а где нули? Поможет правило.

Тангенс – это отношение синуса к косинусу. На концах оси синусов (ось у) тангенс не существует.

Котангенс – это отношение косинуса к синусу. На концах оси косинусов (ось х) котангенс не существует.

В остальных точках идет чередование всего лишь трех чисел: 1, √3 и √3/3 со знаками плюс или минус. Как с ними разобраться? Запомните (а лучше представьте) три обстоятельства:

1) тангенсы и котангенсы всех середин четвертей имеют в модуле 1.

2) тангенсы и котангенсы ближайших к оси х точек имеют в модуле √3/3; √3.

3) тангенсы и котангенсы ближайших к оси у точек имеют в модуле √3; √3/3.

Не ошибитесь со знаками – и вы большой знаток.

Нелишне будет запомнить, как возрастают и убывают тангенс и котангенс на числовой окружности (см.числовую окружность выше или раздел «Возрастание и убывание тригонометрических функций»). Тогда еще лучше будет понятен и порядок чередования значений тангенса и котангенса.

Тригонометрические свойства чисел числовой окружности.

Представим, что определенная точка М имеет значение t.

Свойство 1:


sin (–
t) = –sin t


cos (–
t) = cos t


tg (–
t) = –tg t


ctg (–
t) = –ctg t

cos –60º равен 1/2. Но cos 60º тоже равен 1/2. То есть косинусы –60º и 60º равны как по модулю, так и по знаку: cos –60º = cos 60º.

cos –210º равен –√3/2. Но cos 210º тоже равен –√3/2. То есть: cos –210º = cos 210º.

Таким образом, мы доказали, что cos (–t) = cos t.

sin –60º равен –√3/2. А sin 60º равен √3/2. То есть sin –60º и sin 60º равны по модулю, но противоположны по знаку.

sin –210º равен 1/2. А sin 210º равен –1/2. То есть sin –210º и sin 210º равны по модулю, но противоположны по знаку.

Таким образом, мы доказали, что sin (–t) = –sin t.

Посмотрите, что происходит с тангенсами и котангенсами этих углов – и вы сами легко докажете себе верность двух других тождеств, приведенных в таблице.

Вывод: косинус – четная функция, синус, тангенс и котангенс – нечетные функции.

Свойство 2: Так как t = t + 2πk, то:


sin (t + 2π
k) = sin t


cos (t + 2π
k) = cos t

Пояснение : t и t + 2πk – это одна и та же точка на числовой окружности. Просто в случае с 2πk мы совершаем определенное количество полных оборотов по окружности, прежде чем приходим к точке t. Значит, и равенства, изложенные в этой таблице, очевидны.

Свойство 3: Если две точки окружности находятся друг против друга относительно центра О, то их синусы и косинусы равны по модулю, но противоположны по знаку, а их тангенсы и котангенсы одинаковы как по модулю, так и по знаку.


sin (t + π
) = –sin t


cos (t + π
) = –cos t


tg (t + π
) = tg t


ctg (t + π
) = ctg t

Пояснение : Пусть точка М находится в первой четверти. Она имеет положительное значение синуса и косинуса. Проведем от этой точки диаметр – то есть отрезок, проходящий через центр оси координат и заканчивающийся в точке окружности напротив. Обозначим эту точку буквой N. Как видите, дуга MN равна половине окружности. Вы уже знаете, что половина окружности – это величина, равная π. Значит, точка N находится на расстоянии π от точки М. Говоря иначе, если к точке М прибавить расстояние π, то мы получим точку N, находящуюся напротив. Она находится в третьей четверти. Проверьте, и увидите: косинус и синус точки N – со знаком «минус» (x и y имеют отрицательные значения).

Тангенс и котангенс точки М имеют положительное значение. А тангенс и котангенс точки N? Ответ простой: ведь тангенс и котангенс – это отношение синуса и косинуса. В нашем примере синус и косинус точки N – со знаком «минус». Значит:

–sin t
tg (t + π) = ———— = tg t
–cos t

–cos t
ctg (t + π) = ———— = ctg t
–sin t

Мы доказали, что тангенс и котангенс диаметрально противоположных точек окружности имеют не только одинаковое значение, но и одинаковый знак.

Свойство 4: Если две точки окружности находятся в соседних четвертях, а расстояние между точками равно одной четверти окружности, то синус одной точки равен косинусу другой с тем же знаком, а косинус одной точки равен синусу второй с противоположным знаком.

π
sin (t + —) = cos t
2

π
cos (t + —) = –sin t
2

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *