какая память используется в смартфонах
NVMe против UFS 3.1: Битва типов памяти в смартфонах. Разбор
iPhone быстрые? Да! Но почему?
Apple мало что рассказывает нам про внутренности своих девайсов. Как будто скрывает от нас страшную тайну!
Например, знали ли вы что в iPhone и в Android используется совершенно разный тип флеш-памяти? NVMe в iPhone и UFS в Android.
Флеш-память
Начнём с того что на флешках, картах памяти, в смартфонах и SSD-дисках — везде используют один тот же тип памяти — флеш-память. Это современная технология, пришедшая на смену магнитным носителям информации, то есть жестким дискам.
У флеш-памяти куча преимуществ. Она энергоэффективная, дешевая, прочная и безумно компактная. На чипе размером с монетку помещается до терабайта данных!
Размер чипа Toshiba на фото 16×20 мм
Но как удаётся хранить такие огромные объемы информации при таких крошечных размерах?
Как работает флеш-память?
Давайте разберемся как устроена флеш-память.
Базовая единица современной флэш-памяти — это CTF-ячейка. Расшифровывается как Charge Trap Flash memory cell, то есть Память с Ловушкой Заряда. И это не какая-то образная ловушка а самая настоящая.
Эта ячейка способна запирать электроны внутри себя и хранить их годами! Примерно как ловушка из фильма «Охотники за привидениями». Так что даже если ваш SSD-диск ни к чему не подключен и просто так лежит в тумбочке, знайте — он полон энергии.
Наличие или отсутствие заряда в ячейке компьютер интерпретирует как нули и единицы. В общем-то как и всё в мире технологий.
Таких ячеек много и они стоят друг над другом. Поэтому такая компоновка ячеек называется Vertical NAND или VNAND. Она крайне эффективна и очень интересно организована.
Многоэтажная память
Небольшая аналогия. Представьте, что память — это огромный многоэтажный жилой комплекс, в котором каждая квартира — это ячейка памяти.
Так вот, в одном доме этого ЖК всегда 6 подъездов, на каждом этаже одного подъезда размещается 32 квартиры, т.е. ячейки памяти. А этажей в таком доме может быть аж 136 штук, но только если это самый современный дом. Такой дом с шестью подъездами называется блоком памяти.
К чему я это всё? NAND память организована так, что она не может просто считать и записывать данные в какую-то конкретную ячейку, ну или квартиру. Она сразу считывает или перезаписывает весь подъезд!
А если нужно что-то удалить, то стирается сразу целый дом, то есть блок памяти. Даже если вы просто решили выкинуть ковер в одной квартире — не важно. Весь дом под снос!
Поэтому прежде чем удалить что-либо приходится сначала скопировать всю информацию в соседний блок.
А если памяти на диске осталось мало, меньше 30% от общего объема, то скорость работы такого диска сильно замедляется. Просто потому, что приходится искать свободный блок- место для копирования.
Так что следите за тем, чтобы память на телефоне или SSD-диске были заполнены не более чем на 70%! Иначе всё будет тупить.
Кстати, по этой же причине стирание информации потребляет намного больше энергии, чем чтение и запись. Поэтому хотите сэкономить заряд, поменьше удаляйте файлы!
Напомню, что в жестких дисках, которые HDD, другая проблема. Там информация считывается по одной ячейке. Жесткий диск вращается, а считывающая головка ездит туда-сюда по всей поверхности диска. И, если файлы разбиты на фрагменты, хранящиеся в разных концах диска — скорость падает. Поэтому, для HDD полезна дефрагментация.
Что такое спецификация?
Но вернёмся к флеш-памяти. Естественно сам по себе чип с памятью бесполезен потому как всей этой сложной структурой нужно как-то управлять. Поэтому существуют целые технологические стеки, которые всё разруливают. Их называют стандартами или спецификациями.
Есть чип с флеш-памятью, как правило это NAND память. Там хранятся данные.
А есть спецификация — это целый набор технологий вокруг чипа, программных и аппаратных, которые обеспечивают взаимодействия с памятью. Чем умнее спецификация, тем быстрее работает память.
Так какие же спецификации используются в наших смартфонах и какая из них самая умная? Давайте разберёмся.
Выход первого iPhone в 2007 году спровоцировал постепенный отказ от карт памяти. Появилась потребность в новом стандарте недорогой флеш-памяти для мобильных устройств. Так появился eMMC, что значит встроенная Мультимедиа карта или Embedded Multimedia Card. То есть прям как eSIM (Embedded SIM).
Стандарт eMMС постепенно обновлялся и его скорости росли. И eMMC до сих пор используется в большинстве смартфонов, но данный стандарт явно не рекордсмен по скорости и сильно проигрывает тем же SSD дискам.
Тогда в 2014 году появился новый стандарт с нескромным названием Universal Flash Storage или UFS! Новый стандарт был во всём лучше eMMC.
Во-первых, в UFS последовательный интерфейс. А это значит, что можно одновременно и записывать и считывать. eMMC мог делать только что-то одно. Поэтому UFS работает быстрее!
Во-вторых, он в два раза более энергоэффективный в простое.
Эффективнее работает с файлом подкачки когда ОЗУ забита. И еще, существуют UFS карты памяти, которые могут быть бесшовно интегрированы во внутреннем хранилище! Это же полноценная модульная память!
Кстати, по этой причине, внутреннюю память телефона правильнее называть eUFS. Embedded, ну вы помните.
UFS вышел сразу же в версии 2.0 в 2015 году, а первым телефоном с этим стандартом стал Samsung Galaxy S6. Samsung так гордились скоростью памяти, что даже выкинули слот microSD из Galaxy S6. Казалось бы, судьба стандартов флеш-памяти предрешена — вот он новый король. Новый USB мира флеш-памяти.
Но внезапно выходит iPhone 6s и мы видим это!
Что? Как такое возможно? Что за чудо память в этих iPhone? Похоже, Apple пошли какой-то своей дорожкой. Если стандарты eMMC и UFS — наследники каких-то там детских карт памяти, то память в iPhone — прямой наследник взрослых SSD-дисков. Потому как в iPhone используется спецификация памяти NVMe. Такая же память используется в компах и ноутбуках.
Но ключевое слово в названии Express! Почему?
Спецификация NVMe специально разрабатывалась для SSD-дисков с памятью NAND, подключенных по шине PCI Express.
NVMe создавался с нуля как новый способ эффективной работы с SSD-дисками. Из него убрали всё лишнее и сосредоточились на скорости.
Поэтому, благодаря короткому технологическому стеку, NVMe имеет большое преимущество при случайной записи и чтении блоков над остальными стандартами.
Это свойство особенно полезно для работы операционной системы, которая постоянно считывает и генерит кучу маленьких файлов размером по 4 КБ. Случайное чтение и запись NVMe — это то, что делает iPhone таким быстрым.
Но, естественно, Apple не могли просто запихнуть целый SSD в смартфон. Они модифицировали протокол NVMe и разработали свой кастомный PCI-E контроллер.
Поэтому, то что стоит в iPhone — решение абсолютно уникальное и в своё время было революционным. А они об этом даже ничего не сказали! Как всегда делает Apple.
Такая же история с MacBook. Apple первыми отказались от HDD. И они всегда ставят самую быструю память в ноуты. Во многом поэтому, даже на более слабом железе Mac ощущаются быстрее Windows-ноутбуков.
Тесты
Но вернёмся к смартфонам. Мы выяснили, что Android используют UFS-память, а Айфоны NVMe. Но проблема в том, что сложно сказать какая память действительно быстрее.
Скажем так есть, крутое сравнение от компании Micron. На базе кастомного Android девайса они сравнили NVMe и UFS 2.1 и получили преимущество NVMe по всем показателям! Вот такие:
CPDT Бенчмарк
Но кому это интересно? Сейчас много где есть UFS 3.0, а в Redmi K30 Pro вообще UFS 3.1.
Только посмотрите UFS 3.1 быстрее UFS 2.0 по разным показателям вплоть до 8 раз. Вот с чем надо сравнивать!
UFS 2.0 vs UFS 3.1
Значит надо просто скачать одинаковый тест под iPhone и Android, и готово! Мы узнаем — кто чемпион. Только знаете что? Нет такого теста! Поверьте мы искали. Есть спорные тесты с непонятной методологией (PerfomanceTest), но приличного ничего нет.
Кроме… Вот этого чудесного теста: Cross Platform Disk Test. Работает на всех платформах, подробно описана методология тестирования. И даже есть результаты тестов некоторых iPhone:
Но вот незадача, версия приложения для iOS так и не была выпущена.
Но мы не отчаялись! Как выяснилось, разработчика зовут Максим, он из Минска. Поэтому мы с ним связались и Макс любезно предоставил нам девелопер версию приложения под iOS.
Поэтому сегодня мы наверняка узнаем где всё-таки быстрее память: На самых последних iPhone или на самых крутых Android-смартфонах:
В итоге побеждает дружба, в последовательной записи вроде бы все очень неплохо у Apple, но по произвольной они подчистую сливают Android-смартфонам. В копировании — буквальное равенство результатов. При этом заметьте, что Poco F2 Pro с UFS 3.1 показал себя в тестах никак и проиграл и Sony Xperia 1 II, и OnePlus 8 Pro. Возможно решает не только это! А вот в сравнении с «взрослым» NVMe в ноутбуках мобильный NVMe в 3-4 раза медленнее и это конечно не радует. С другой стороны это значит, что смартфонам есть куда расти!
Еще раз хотим поблагодарить Максима за помощь и инструкции! Помните, тест не из лёгких, поэтому если у вас будет вылетать не ругайтесь!
Какая память используется в смартфонах
Собираетесь купить новый мобильный телефон Android и не знаете, какая память лучше? В смартфонах есть две основных памяти: оперативная память и внутреннее хранилище.
Сегодня мы рассмотрим какие типы памяти существуют в телефонах Android и какой из них следует выбрать для оптимальной производительности.
Тип памяти важнее количества
То, что мобильный телефон имеет 8 ГБ оперативной памяти, не означает, что он лучше, чем мобильный телефон с 4 или 6 ГБ. Наличие большого количества этой памяти важно, но также очень важен тип памяти ОЗУ.
То же самое происходит с внутренней памятью устройства. Лучше иметь новый тип внутренней памяти с меньшим количеством ГБ, чем иметь 512 ГБ устаревшего хранилища.
Оперативная память: LPDDR4, LPDDR4X и LPDDR5
Если вы посмотрите на список характеристик смартфона, который собираетесь купить, вы увидите какой у него тип оперативной памяти. С годами технологии развивались, и версии памяти тоже. В настоящее время наиболее распространены три типа оперативной памяти: LPDDR4, LPDDR4X и LPDDR5.
Наименее продвинутым типом из всех является LPDDR4, поэтому данную память можно найти в устройствах среднего и бюджетного класса. Не рекомендуется покупать устройства с типом оперативной памяти ниже этих трех, о которых мы писали выше.
Все они относительно продвинутые, хотя, если вы хотите добиться максимальной производительности, вам всегда следует искать самый новый тип оперативной памяти. На рынке есть мобильные телефоны с LPDDR5, хотя стоят они очень дорого.
Если вы ищете сбалансированный средний диапазон, лучше всего выбрать RAM LPDDR4X. У этого типа оперативной памяти более высокая производительность, чем у LPDDR4. Если в мобильном телефоне, который вы хотите купить, установлена RAM LPDDR4, вы также можете рассмотреть его, хотя мы рекомендуем выбрать более обновленную версию ОЗУ.
Внутренняя память: eMMC 5.1, UFS 2.0, UFS 2.1, UFS 3.1
Оперативная память важна, но тип внутреннего хранилища также является очень важным для устройства. Наличие чипа быстрой внутренней памяти ускорит загрузку всего на вашем устройстве. Мы не рекомендуем покупать устройства с памятью eMMC. Это старая технология, которая может снизить эффективность работы вашего устройства.
Эти типы микросхем ведут себя очень плохо, когда хранилище почти заполнено, чего не происходит с памятью UFS. В недорогих устройствах среднего уровня вы можете найти хранилище объемом 64 или 128 ГБ, которое может привлечь много внимания, но вы должны убедиться, что эта память не eMMC.
В случае с чипами UFS – все они рекомендуются. Если вы хотите быстрый смартфон, тогда стоит выбирать устройства с памятью UFS 2.1, UFS 2.2 или UFS 3.1. Каждая версия немного улучшает предыдущую и повышает производительность устройства.
Все, что происходит на вашем устройстве, проходит через хранилище, поэтому для хорошей производительности лучше иметь более новый тип памяти. Намного лучше иметь 64 ГБ тип UFS 3.0, чем 128 ГБ тип UFS 2.0.
Это то, что вы должны учитывать при покупке устройства, поскольку тип внутренней памяти имеет решающее значение для смартфонов. В настоящее время лучше всего выбирать чипы UFS 2.2 и выше. Но помните, не покупайте мобильный телефон с хранилищем eMMC.
Как узнать, какой тип памяти у смартфона
Вы, наверное, задаетесь вопросом, как узнать, какой тип оперативной и внутренней памяти в смартфоне, который вы собираетесь купить. Лучше всего найти в интернете подробный обзор телефона, который вас интересует. Обычно в подобных статьях указывается тип оперативной и внутренней памяти.
Заключение
Короче говоря, если вы хотите купить смартфон в 2020 или 2021 году, настоятельно рекомендуется, чтобы он имел оперативную память LPDDR4X или выше и хранилище UFS 2.1 или выше. Также стоит помнить, что смартфоны с памятью ниже рекомендуемых версий будут менее производительными.
Память смартфона: что такое LPDDR4, eMMC, UFS и microSD и чем они отличаются
Мы уже не раз шутили, что нынешние смартфоны по количеству ядер процессора, объемом оперативной памяти и встроенным хранилищам вплотную приблизились к ноутбукам. Схемотехника усложнилась, появились новые типы памяти и неподготовленный читатель сходу не разберется, чем LPDDR отличается от UFS. Несмотря на то, что многие не любят сравнения в духе «смартфон — это крохотный карманный компьютер», эта фраза очень близка к истине. И если вы ориентируетесь во внутренней кухне вашего ПК или ноутбука, разобраться с устройством смартфона не составит труда.
Оперативная память
ОЗУ (оперативное запоминающее устройство) — память с произвольным доступом для временного хранения данных, которое критически важно для функционирования программного обеспечения. Она работает в качестве временного буфера между дисковыми накопителями и процессором, в котором хранятся важные в данный момент данные и запущенные программы. Если упростить, то это очень быстрое временное хранилище для данных, которые обрабатываются другими элементами компьютера здесь и сейчас.
В компьютерах используется память DDR, в смартфонах ее уменьшенная и энергоэффективная альтернатива с приставкой LP (Low Power). В современных смартфонах как правило устанавливается память LPDDR четвертого поколения. Второе и третье считаются морально устаревшими, тем не менее «тройку» продолжают активно использовать в гаджетах начального уровня, где не нужна крейсерская скорость.
Впрочем, даже четвертое поколение не всегда справляется с нынешними задачами и увеличение объема памяти в некоторых случаях не спасает ситуацию. Например при записи супер-замедленного видео со скоростью под тысячу FPS пропускной способности в 3200 Мбит/с LPDDR4 попросту не хватает. Поэтому специально для флагманов и камерофонов была создана ускоренная память LPDDR4x с той же частотой 1600 МГц, но увеличенной до 4266 Мбит/с пропускной способностью.
А на горизонте маячит новый стандарт LPDDR5, способный выдавать до 6.4 Гбит/с. Такая скорость очень пригодится в тяжелых играх, приложениях для виртуальной реальности, видеосъемке в 4K или записи роликов SuperSlowMotion. Помимо ускорения LPDDR5 научится режиму глубокого сна, когда буферы ввода-вывода и внутренняя схема отключается, что позволяет экономить до 40% энергии.
А что с ОЗУ в iPhone?
В iPhone все намного запутаннее. Во время презентации новых продуктов Apple не особо охотно афиширует информацию об объемах ОЗУ, хотя в последнее время они очень много говорят о начинке своей техники. Не потому, что в Купертино считают ее бесполезной, а потому, что новые iPhone до недавнего времени не могли похвастать чем-то особенным. Из-за особенностей системы и оптимизации смартфонам Apple всегда хватало нескольких гигабайт: у iPhone XR было всего 3 ГБ, iPhone 11 получил 4 ГБ, а 11 Pro и 11 Pro Max — по 6 ГБ. Согласитесь, это звучит не так впечатляюще, как 12 ГБ у Galaxy Note 10 Plus или OnePlus 8 Pro.
Значит ли это, что нас дурят? Отнюдь. Дело в том, что приложения на Android использую Java и требуют дополнительный объем ОЗУ для процесса освобождения памяти после завершения программы. Эта штука называется garbage collection и работает она до тех пор, пока в системе остается свободная память. Как только активных программ становится много, начинаются сложности: эффективность garbage collection падает в разы, а на процесс затрачивается куда больше памяти, чем в действительности требуется приложению. Порой в 4 – 8 раз больше! Именно поэтому смартфонам на Android требуется существенно больше памяти, чем iPhone.
Что эта информация дает нам?
Лучшее понимание при выборе смартфона. Как вы уже поняли, у Apple с этим нет проблем, поэтому можно покупать, что приглянулось и не переживать. Главное, не брать что-то совсем уж древнее, где не будет хватать ни ОЗУ, ни мощности процессора.
Если говорить о вариантах на базе ОС Android, то в бюджетном аппарате можно не переживать за тип памяти, важнее будет ее количество. К середине 2020 года нормой для недорого апарата считаются 3 – 4 ГБ. Два тоже можно, однако открытые приложения и вкладки браузера будут постоянно перезагружаться из-за нехватки памяти. Да и через полгода-год использования он будет работать ощутимо медленнее.
В мощных аппаратах вполне хватит LPDDR4 объемом в 6 – 8 ГБ. Чтобы и игры запускать, и приложения в трее не перезагружать, и сохранять общую скорость работы системы.
В топовых камерофонах, от которых потребуется комплексная видеосъемка, лучше всего смотреть варианты LPDDR4x объемом в 8 – 12 ГБ.
Правда ли, что внутренние накопители смартфонов лучше любой карты памяти, и когда отправят на пенсию microSD?
Привет, Гиктаймс! В последние годы производители гаджетов считают, что хороший смартфон — монолитный смартфон. Аккумуляторы перестали быть съёмными, привычные SIM-карты, в их классическом понимании, тоже могут кануть в небытие, а взамен старой доброй microSD производители активно «педалируют» развитие встроенных в смартфоны накопителей. Действительно ли «приколоченные гвоздями» гигабайты настолько быстрые, выгодные и надёжные, или перед нами всего лишь новый виток на пути к «одноразовым» гаджетам?
Карты памяти соседствовали с умными телефонами ещё с «доисторических» врёмён. Первый в мире смартфон, IBM Simon, ещё в 1994 году довольствовался 1 Мбайт на внутреннем накопителе, но поддерживал подключение накопителей объёмом до 1,8 Мбайт при помощи интерфейса PCMCIA. И Nokia 9000 Communicator, которая появилась двумя годами позже, тоже могла похвастать слотом MMC.
После этого годы напролет слот MMC/RS-MMC/Memory Stick/SD/miniSD/microSD стал постоянным спутником мобильных телефонов. Исключение составляли только модели с огромным, монструозным объёмом памяти, которое выделялись на фоне конкурентов, как нынешние мобильники с 256 Гбайт на борту по соседству с обычным стиральным порошком смартфоном.
О чудесных отговорках производителей, которые ампутировали слот microSD в смартфонах, и «подвальном» способе нарастить память мы уже говорили ранее, а сегодня нам предстоит разобраться, является ли внутренний накопитель чем-то большим, чем «флэшкой наизнанку», и что он собой представляет в сравнении с microSD такого же периода выпуска.
eMMC — интегрированная «флэшка» в мультимедийных мобильниках
Отказ от съёмных накопителей в смартфонах, не будем лукавить, спровоцировал iPhone в 2007 году, а техническая реализация для производителей устройств «подъехала» из комитета стандартизации JEDEC в виде модулей eMMC.
Сферический eMMC-чип в упаковке: Kingston KE4CN2H5A, 4 Гбайт, 153-Pin, BGA
Что такое eMMC? Интегрированная мультимедиа карта (Embedded Multimedia Card). Разрабатывалась для мобильников, планшетов, навигаторов, автомобильных мультимедиа-систем и другой потребительской электроники. Дебют чипов eMMC пришёлся на 2008 год и совпал с периодом, когда производители электроники вынесли своё решение в так называемой «битвой форматов». За внимание вендоров боролись два варианта подсистемы памяти в мобильных устройствах:
• NOR-флэш память для хранения и SRAM/PSRAM в роли ОЗУ. За такую комбинацию выступали Intel и Spansion (ныне — Cypress Semiconductor). Накопитель в такой конструкции представлял собой MCP-чип, такого вида конструкция была наиболее распространена в эпоху кнопочных смартфонов.
«Олдскульная» комбинация была мила производителям гаджетов умеренным энергопотреблением и более высокой производительностью в операциях на чтение данных.
• NAND-флэш память и SDRAM ОЗУ была новомодной конструкцией, за распространение которой выступал огромный альянс, в котором главными идеологами были Samsung и Toshiba. Такое сочетание компонентов негативно сказывалось на автономности мобильных устройств, зато производительность оперативной памяти и дешевизна (уже тогда) NAND сделали своё дело — мобильники нуждались в собственных накопителях не только для служебных нужд, а NAND уже на раннем этапе своего внедрения в гаджеты обходилась вендорам на треть дешевле, чем NOR.
Принцип работы eMMC в сравнении с типичными флэш-накопителями
Наибольшее распространение получил второй вариант, поэтому типичный накопитель eMMC представлял собой чип на базе NAND-памяти + интегрированный контроллер с поддержкой коррекции ошибок (ECC). Таким образом, производители мобильной техники заполучили ёмкую и недорогую реализацию подсистемы памяти, минуя неуклюжие (как для телефонов) жёсткие диски.
2008 год. Учёные выяснили, что памяти в смартфонах может быть много
Словом, интегрированная универсальная (а не только под настройки, реестр приложений и телефонную книгу) память в смартфонах всё ещё была бешено дорогой, но уже могла похвастаться внушительным на объёмом на рубеже 2009-2010 гг. Не забывайте, что до съёмки видео в Full HD в популярных смартфонах ещё оставалось немало времени, а в 2009 году на свет появилась Nokia N97 с умопомрачительными 32 Гбайт встроенной памяти стоимостью всё те же 27 тысяч рублей на старте продаж.
Ёмкость eMMC в смартфонах увеличивалась не так интенсивно, как хотелось бы (источник: Micron Marketing)
И всё же карты памяти аналогичного периода были в разы дешевле. Даже с учётом того, что microSDHC был новым стандартом, а продажи приходились чаще всего на карты стандарта Class 4.
На стороне интегрированной памяти, в теории, была более высокая производительность в линейных операциях на чтение и запись, и новейший стандарт eMMC 4.41 образца 2010 года допускал «потолок» пропускной способности до 100 Мбайт/с, скорость записи до 30 Мбайт/с. Стоит ли говорить, что:
1. В реальных сценариях работы скорость была несравнимо ниже
2. Аппаратная платформа смартфонов 2010 модельного года не могла реализовать весь потенциал eMMC 4.1
3. Подавляющее большинство смартфонов довольствовались 4-8 Гбайт встроенной памяти
При этом карты памяти классов 4 и 6 де-факто умели работать даже быстрее, чем им позволял встроенный в смартфоны контроллер, запись видео с битрейтом свыше 50 Мбит/с в мобильниках была экзотикой, а быстродействие приложений, как и в случае с SSD зависело не от пиковых линейных значений скорости, а от быстродействия в работе с крохотными файлами объёмом до мегабайта.
2013 год. Период зрелости eMMC, «доработка напильником»
Версия интерфейса MMC | Пропускная способность, Мбайт/с | Предельная скорость записи, Мбайт/с |
4.41 | 104 |