какая поверхность называется зеркальной

Законы отражения света

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

1Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2Угол отражения γ равен углу падения α :

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ ( α = γ ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

Источник

Содержание:

Зеркальное и рассеянное отражение света:

Помните мультфильм о Крошке Еноте, который хотел добраться на другой берег пруда, но ужасно боялся Того, Кто Сидит в Пруду? Что только Енот ни делал: и грозил ему кулаком, и замахивался палкой — все напрасно. Каждый раз Тот. Кто Сидит в Пруду, отвечал Крошке тем же. И только улыбка решила асе проблемы. В ответ на улыбку Крошки Енота Тот, Кто Сидит в Пруду, тоже улыбнулся. Вы, конечно, догадались, что в пруду Енот видел свое отражение.

Изображение в плоском зеркале

Каждый раз, подходя к зеркалу, мы, как и Крошка Енот, видим в нем своего «двойника*. Конечно, никакого «двойника* там нет — мы говорим, что видим в зеркале свое изображение.

Рассмотрим, как образуется изображение в плоском зеркале.

Пусть из точечного источника света S на поверхность плоского зеркала падает расходящийся пучок света. Из множества падающих лучей выделим лучи SA, SB, SC (рис. 3.24).

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Пользуясь законами отражения света, построим отраженные лучикакая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

Нам будет казаться, что эти лучи выходят из точки какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной, хотя в действительности никакого источника света в точке какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальнойне существует. Поэтому точку В, называют мнимым изображением точки S. Плоское зеркало всегда дает мнимое изображение. (Действительное изображение можно получить, например, с помощью собирающей линзы, с которой вы познакомитесь немного позже, или маленького отверстия.)

Изучение изображения в плоском зеркале

Проведем опыт, с помощью которого выясним, как расположены предмет и его изображение относительно зеркала. Пусть в роли

какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной

зеркала будет плоское стекло, закрепленное вертикально. С одной стороны стекла установим горящую свечу (в стекле появится ее изображение), а с другой — точно такую же, но не зажженную (рис. 3.25, а). Передвигая незажженную свечу, найдем такое ее расположение, что эта свеча, если смотреть на нее сквозь стекло, будет казаться горящей (рис. 3.25, б). В этом случае незажженная свеча окажется в месте, где наблюдается изображение в стекле зажженной свечи.

Схематично изобразим на бумаге местоположение стекла (прямая MN), зажженной и незажженной свечей: S — зажженная свеча, какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной— незажженная свеча (точка какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальнойв нашем случае показывает также местоположение изображения зажженной свечи) (рис. 3.25, в). Если теперь соединить точки S и какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальнойи провести необходимые измерения, то убедимся, что прямая MN перпендикулярна отрезку Sкакая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной, а длина отрезка SO равна длине отрезка какая поверхность называется зеркальной. Смотреть фото какая поверхность называется зеркальной. Смотреть картинку какая поверхность называется зеркальной. Картинка про какая поверхность называется зеркальной. Фото какая поверхность называется зеркальной0.

Благодаря описанному опыту (а также множеству других, направленных на изучение процесса отражения света) можно установить общие характеристики изображений в плоских зеркалах:

Зеркальное и рассеянное отражение света

Вечером, когда в комнате горит свет, мы можем видеть свое изображение в оконном стекле. Но изображение исчезает, если задернуть шторы: глядя на ткань, мы своего изображения не увидим. Но чем в этом случае отличается штора от стекла и почему на ней нельзя увидеть свое изображение?

Ответ на эти вопросы связан по меньшей мере с двумя физическими явлениями. Первое из них — отражение света. Чтобы появилось изображение, свет должен отразиться от поверхности зеркально. После зеркального отражения света, поступающего от точечного источника S, продолжения отраженных лучей соберутся в одной точке S,, которая и будет изображением точки S (рис. 3.26, а). Такой вид отражения возможен не от всех поверхностей, а только от очень гладких. Такая поверхность отражения называется зеркальной (рис. 3.26, б, в). Кроме обычного зеркала, примерами зеркальных поверхностей являются стекла автомобилей, витрин магазинов, полированная мебель, ложки и лезвия ножей из нержавеющей стали, спокойная поверхность воды (как в случае с Крошкой Енотом) и т. п.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Физика

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Зеркало. Как видит человек в зеркале?

Полезнейшая вещь есть в любом доме, и используется ежедневно – зеркало. Предметы находятся перед ним, и кажется, что и внутри зеркала есть точно такие же предметы. То, что видимо в зеркале называется изображением предмета.

Свеча перед зеркалом.

Почему человек видит то, чего за зеркальной плоскостью нет? Как это выходит?

Человеческий глаз воспринимает физические тела и вещества с помощью лучей, расходящихся от них во все стороны. Часть этих лучей направлена в глаз, и человек воспринимает окружающие предметы. А теперь, как человек видит что-то в зеркале?

От предмета не все лучи идут к глазу. Некоторая часть их идет на рядом стоящее зеркало. По закону оптики каждый из лучей отражается от зеркальной поверхности под таким же углом, под каким падает.

Пусть точка C стоит перед зеркалом MN. Лучи ведут себя одинаково, поэтому достаточно рассмотреть три из них, чтобы стал понятен их ход.

Точка С в зеркале MN.

Луч СО падает под углом 0 о и отражается тоже под таким же углом (проявляется обратимость лучей света).

Лучи СО1 и СО2, отражаясь от зеркала, направляются к глазу, и вместе с ними пучок остальных лучей, которые просто не указаны на чертеже (они ведут себя так же).

Продолжения лучей (сделаны пунктиром) с обратной стороны зеркала пересекутся в точке С1.Это изображение точки С.

В действительности лучей там нет и точки С1 тоже нет. Такое изображение называется мнимым изображением.

Используя обычную линейку и свечу можно определить свойства мнимого зеркального изображения.

Для этого надо взять стекло, которое одновременно с отражением дает возможность увидеть за ним линейку.

Стекло вертикально ставится на линейку. Перед стеклом на расстоянии 2 см ставится свечка.

Свечка перед стеклом.

Мнимое изображение свечи находится через 2 см от стекла с обратной стороны. Причем, его высота совпадает с высотой рассматриваемой свечи.

Итак, плоское зеркало дает следующие свойства изображению:

Еще одна особенность зеркальных поверхностей в том, что они дают симметричное изображение. Это видно из простого примера. Если поднести к зеркалу правую руку, там будет видна будто бы левая рука.

Используя понятие симметрии, можно выполнять чертежи предметов, и их зеркальных изображений.

Симметрия в зеркальном отражении.

Отражение зеркальное и рассеянное

Встает вопрос, почему не дает изображения, например, белая бумага, ведь она тоже отражает свет, не являясь его источником.

Объясняется это тем, что зеркало обладает очень гладкой поверхностью. Попадая на него, поток параллельных лучей отражается тоже параллельными лучами, иначе, что падает, то и отражается.

На бумажной поверхности есть мельчайшие неровности. Попадая на них, параллельные лучи уже не будут отражаться параллельно друг другу.

В результате то, что отражается, не получается таким же, как при падении на гладкую поверхность. Когда параллельные лучи рассеиваются от поверхности в разных направлениях, отражение называется рассеянным.

Зеркальное и рассеянное отражение.

Чем глаже поверхность, тем ближе ее свойства к зеркальным.

Зеркала не только дома

Отражающие свойства зеркал используются в перископах – приборах для просмотра местности из укрытий. Так, не поднимаясь на поверхность воды из подводной лодки можно увидеть берег или надводные корабли.

Ход лучей в перископе.

Зеркала перископа установлены под таким углом, чтобы изображение передавалось сверху вниз наблюдателю через смотровое отверстие.

По принципу устройства перископа можно решить задачу об освещении длинного коридора с помощью одной свечи и нескольких зеркал.

Одна свеча на весь коридор.

Поставив зеркала на таком расстоянии друг от друга, чтобы лучи попадали из одного зеркала в другое, нужно запустить поток света по всему коридору. Конечно, эта задача не практическая, и никто не будет освещать комнаты таким способом, но теоретически это возможно и интересно.

Еще одним интересным примером, где используются свойства зеркал, является красивая легенда об Архимеде. Спасая город Сиракузы от врагов, Архимед велел так отполировать щиты своих воинов, чтобы они блестели, как зеркала.

Изучая свойства отражения, Архимед пришел к выводу, что с помощью зеркала можно сконцентрировать световую энергию солнца так, чтобы произошло воспламенение. Собрав большое число зеркал, и направив солнечные лучи на деревянные корабли противника, сиракузцы сожгли вражеский флот.

Как зажечь зеркалами деревянный корабль.

В современном мире зеркала плоские и сферические (округлой формы) применяются довольно широко:

И это далеко не полный список применения зеркал в разных отраслях жизни человека.

Линзы. Какими они бывают?

Управлять световыми пучками можно еще с помощью одного изобретения. Это очки – не только помогающие хорошо видеть, вставленные в оправу линзы, а устройства, управляющие светом.

Схематически с использованием геометрических построений линзу можно представить так:

У элементов линзы есть специальные названия:

Если с точки зрения геометрии сферические поверхности пересекаются, такая линза называется выпуклой. Края ее много тоньше середины.

По-другому образуется вогнутая линза. Геометрические поверхности ее не пересекаются, а отдалены на некоторое расстояние.

Сочетание закругленных поверхностей определяет свойства различных линз. Они по-разному изменяют направления лучей.

Световые лучи дважды преломляются, проходя линзу. Первый раз на входе в линзу, второй раз при выходе из нее. Дальше лучи или пересекаются, или расходятся в разные стороны.

Прохождение лучей сквозь линзы.

У всех линз есть важнейшая характеристика.

Выпуклая линза собирает лучи в одну точку, называемую фокусом линзы (F).

Из вогнутой линзы лучи выходят расходящимся пучком. Но и здесь есть фокус, только мнимый. Он находится перед линзой в точке, где пересекаются продолжения расходящихся лучей. Название «мнимый» фокус получил, потому что пересекаются не сами лучи, а прямые, на которых они располагаются.

Линзы бывают различными. Их свойства зависят от вида образующих поверхностей.

Основной особенностью собирающих линз является то, что расстояние между поверхностями в центре больше, чем по краям. У рассеивающих линз, наоборот, в центре расстояние между поверхностями меньше, чем по краям.

Главное отличие линз.

Такое строение и определяет ход лучей на выходе из линз (лучи пересекаются или расходятся).

Ход лучей в линзах разного типа.

Геометрия помогает оптике. Изображения, даваемые линзами

При рассмотрении изображений, даваемых линзами, не учитывается преломление внутри линз. Важно, как пойдет свет за линзами. Поэтому используется чертеж, на котором указываются только основные лучи, а сами линзы представлены отрезками со стрелками на концах.

Из каждой точки предмета выходят пучки расходящихся световых лучей. Точек бесконечно много, значит, и количество лучей бесконечно. После преломления за собирающей линзой лучи вновь сходятся в определенных точках. Перед рассеивающей линзой пересекаются линии, продолжающие лучи. Именно эти точки пересечения образуют в совокупности даваемое линзой изображение.

Всю массу лучей построить нереально, поэтому используется следующий геометрический прием:

Пусть предмет АВ (на чертеже красная стрелка) рассматривается сквозь собирающую линзу. Выполняя чертеж, от каждой точки предмета строят два основных луча.

На примере точек А и В видно, как получается их изображение. Точка В1 – это точка пересечения лучей, идущих из точки В. Точка А1 – это точка пересечения лучей, которые идут из точки А.

Если бы было возможно провести изо всех точек предмета АВ такие лучи, то после линзы они пересеклись бы на изображении А1В1.

Называют изображения по трем параметрам:

Изображения различны, и зависит это от расположения предмета по отношению к фокусам линзы F или двойным фокусам 2F.

В приведенном примере предмет находится дальше двойного фокуса, и поэтому изображение получается действительным перевернутым уменьшенным.

Вот еще несколько примеров построения изображений, даваемых линзами. Для упрощения чертежа пусть предмет стоит на главной оптической оси.

Действительное перевернутое увеличенное изображение дает собирающая линза, когда предмет находится между фокусом и двойным фокусом.

Если предмет поместить в точку фокуса, его изображение будет просто размытым, так как выходящие из линзы лучи пойдут параллельно.

Предмет в точке двойного фокуса – изображение перевернутое исходного размера.

А теперь, как строится изображение в рассеивающей линзе, которая на чертеже – это отрезок с расходящимися стрелками, остальные элементы чертежа остаются прежними.

Изображение образуется там, где пересекаются прямые, содержащие расходящиеся лучи, перед линзой. Это будет мнимое прямое уменьшенное изображение.

Поместив предмет в другое место, получим новое изображение.

Характеристики изображения аналогичны предыдущему случаю. Оно будет мнимым уменьшенным и прямым, не зависимо от расположения предмета перед линзой.

Главные характеристики линзы

На практике используются линзы различных размеров, вогнутые и выпуклые, с маленьким радиусом кривизны и большим. Чаще других линзы встречаются в обыкновенных очках. Интересно то, что очки, хорошо помогающие видеть одному человеку, абсолютно не подходят другому. Почему? Объясняется это явление важнейшими характеристиками линз: фокусным расстоянием и оптической силой.

Фокусное расстояние связано с радиусами поверхностей, образующих линзу. Проще говоря, чем более выпуклыми являются поверхности, тем меньше фокусное расстояние. Такие линзы сильнее преломляют лучи и дают большее увеличение. Соответственно линзы с менее выпуклыми поверхностями имеют большее фокусное расстояние, слабее преломляют лучи и дают меньшее увеличение.

Собирающие линзы обладают положительной оптической силой.

Так как у рассеивающих линз фокус мнимый, условно принято считать фокусное расстояние отрицательным и оптическую силу таких линз тоже отрицательной.

В большинстве устройств оптики применяется сразу несколько линз, образующих систему. Общая оптическая сила определяется как сумма оптических сил всех входящих в систему линз.

Буквой n обозначено количество использованных линз.

Разнообразие линз беззеркальной камеры.

Глаз. Зрение. Очки

Когда человек надевает очки, оказывается, он создает систему линз, помогающую ему хорошо видеть. Глаз человека или животного – это не просто орган зрения, а оптическая система, созданная природой. Среди частей глаза есть роговица (передняя часть оболочки глаза), прозрачное тело в виде двояко-выпуклой линзы – хрусталик. За хрусталиком располагается стекловидное тело. Эти три составляющие элемента образуют оптическую систему глаза.

Сетчатка, расположенная за стекловидным веществом, является экраном для этой системы.

Пройдя через такую систему, световые лучи преобразуются в действительное уменьшенное перевернутое изображение.

Человек же получает информацию и другими органами чувств, не только глазами. В результате анализа и корректировки мозгом полученных сведений видит изображение прямым.

Здоровый глаз дает разборчивое изображение прямо на сетчатке. По правилам построения изображений можно сказать, что их характеристики должны быть различными в зависимости от того, где находится рассматриваемый предмет. Так, как же глаз видит при переводе взгляда с близкого предмета на удаленный или наоборот?

В результате эволюционного развития человека глаз приобрел очень полезное свойство приспосабливаться к видению на различных расстояниях. Это свойство называется аккомодацией. При взгляде на удаленные предметы кривизна хрусталика невелика, мышцы глаза его не сдавливают. При этом оптическая сила «живой» линзы слабая.

Взгляд переводится на близкий предмет, мышцы напрягаются, кривизна хрусталика увеличивается, и оптическая сила глаза становится больше.

Так здоровым глазом контролируется видение в различных точках окружающего пространства.

Использовать очки приходится человеку, у которого есть нарушения в оптической системе глаза. Например, это может быть дальнозоркость или близорукость.

С помощью очков глаз получает дополнительные линзы, которые вместе с глазом дают четкое изображение на сетчатке.

Система глаз + очки.

Близорукий глаз дает изображение внутри стекловидного тела перед сетчаткой. Для исправления этого дефекта нужно ослабить оптическую силу глаза, применив рассеивающую линзу.

Наоборот, дальнозоркому глазу нужно увеличение оптической силы, что и делает собирающая линза. Даваемое за сетчаткой изображение переносится на сетчатку.

С возрастом способность к аккомодации у глаза ослабевает. Мышцам труднее сжимать хрусталик, и поэтому пожилые люди становятся дальнозоркими.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *