какая предобработка текста нужна для генерации речи

Обработка естественного языка

Содержание

Задачи [ править ]

Определение:
Корпус — подобранная и обработанная по определённым правилам совокупность текстов, используемых в качестве базы для исследования языка.

NLP решает большой набор задач, который можно разбить по уровням (в скобках). Среди этих задач, можно выделить следующие:

Основные подходы [ править ]

Предобработка текста [ править ]

Предобработка текста переводит текст на естественном языке в формат удобный для дальнейшей работы. Предобработка состоит из различных этапов, которые могут отличаться в зависимости от задачи и реализации. Далее приведен один из возможных набор этапов:

Стемминг [ править ]

Количество корректных словоформ, значения которых схожи, но написания отличаются суффиксами, приставками, окончаниями и прочим, очень велико, что усложняет создание словарей и дальнейшую обработку. Стемминг позволяет привести слово к его основной форме. Суть подхода в нахождении основы слова, для этого с конца и начала слова последовательно отрезаются его части. Правила отсекания для стеммера создаются заранее, и чаще всего представляют из себя регулярные выражения, что делает данный подход трудоемким, так как при подключении очередного языка нужны новые лингвистические исследования. Вторым недостатком подхода является возможная потеря информации при отрезании частей, например, мы можем потерять информацию о части речи.

Лемматизация [ править ]

Данный подход является альтернативой стемминга. Основная идея в приведении слова к словарной форме — лемме. Например для русского языка:

Векторизация [ править ]

Большинство математических моделей работают в векторных пространствах больших размерностей, поэтому необходимо отобразить текст в векторном пространстве. Основным походом является мешок слов (bag-of-words): для документа формируется вектор размерности словаря, для каждого слова выделяется своя размерность, для документа записывается признак насколько часто слово встречается в нем, получаем вектор. Наиболее распространенным методом для вычисления признака является TF-IDF [4] (TF — частота слова, term frequency, IDF — обратная частота документа, inverse document frequency). TF вычисляется, например, счетчиком вхождения слова. IDF обычно вычисляют как логарифм от числа документов в корпусе, разделённый на количество документов, где это слово представлено. Таким образом, если какое-то слово встретилось во всех документах корпуса, то такое слово не будет никуда добавлено. Плюсами мешка слов является простая реализация, однако данный метод теряет часть информации, например, порядок слов. Для уменьшения потери информации можно использовать мешок N-грамм (добавлять не только слова, но и словосочетания), или использовать методы векторных представлений слов это, например, позволяет снизить ошибку на словах с одинаковыми написаниями, но разными значениями.

Дедубликация [ править ]

Так как количество схожих документов в большом корпусе может быть велико, необходимо избавляться от дубликатов. Так как каждый документ может быть представлен как вектор, то мы можем определить их близость, взяв косинус или другую метрику. Минусом является то, что для больших корпусов полный перебор по всем документам будет невозможен. Для оптимизации можно использовать локально-чувствительный хеш, который поместит близко похожие объекты.

Семантический анализ [ править ]

Семантический (смысловой) анализ текста — выделение семантических отношений, формировании семантического представления. В общем случае семантическое представление является графом, семантической сетью, отражающим бинарные отношения между двумя узлами — смысловыми единицами текста. Глубина семантического анализа может быть разной, а в реальных системах чаще всего строится только лишь синтаксико-семантическое представление текста или отдельных предложений. Семантический анализ применяется в задачах анализа тональности текста [5] (Sentiment analysis), например, для автоматизированного определения положительности отзывов.

Распознавание именованных сущностей и извлечение отношений [ править ]

Именованные сущности — объекты из текста, которые могут быть отнесены к одной из заранее заявленных категорий (например, организации, личности, адреса). Идентификация ссылок на подобные сущности в тексте является задачей распознавания именованных сущностей.

Определение семантических отношений между именованными сущностями или другими объектами текста, является задачей извлечения отношений. Примеры отношений: (автор,книга), (организация,главный_офис).

Использование N-грамм [ править ]

В NLP N-граммы используются для построения вероятностных моделей, задач схожести текстов, категоризации текста и языка.

Построив N-граммную модель можно определить вероятность употребления заданной фразы в тексте. N-граммная модель рассчитывает вероятность последнего слова N-граммы, если известны все предыдущие, при этом полагается, что вероятность появления каждого слова зависит только от предыдущих слов.

Использование N-грамм применяется в задаче выявления плагиата. Текст разбивается на несколько фрагментов, представленных N-граммами. Сравнение N-грамм друг с другом позволяет определить степень сходства документов. Аналогичным способом можно решать задачу исправления орфографических ошибок, подбирая слова кандидаты для замены.

Частеречная разметка [ править ]

Частеречная разметка (POS-тэгирование, англ. part-of-speech tagging) используется в NLP для определения части речи и грамматических характеристик слов в тексте с приписыванием им соответствующих тегов. Модель необходима, когда значение слова зависит от контекста. Например, в предложениях «Столовая ложка» и «Школьная столовая» слово «столовая» имеет разные части речи. POS-тэгирование позволяет сопоставить слову в тексте специальный тэг на основе его значения и контекста.

Алгоритмы частеречной разметки делятся на несколько групп:

POS-тэгирование является неотъемлемой частью обработки естественного языка. Без частеречной разметки становится невозможным дальнейший анализ текста из-за возникновения неопределенностей в значениях слов. Данный алгоритм используется при решении таких задач как перевод на другой язык, определение смысла текста, проверка на пунктуационные и речевые ошибки. Также можно автоматизировать процесс определения хештегов у постов и статей, выделяя существительные в приведенном тексте.

Библиотеки для NLP [ править ]

NLTK (Natural Language ToolKit) [14] [ править ]

Пакет библиотек и программ для символьной и статистической обработки естественного языка, написанных на Python и разработанных по методологии SCRUM. Содержит графические представления и примеры данных. Поддерживает работу с множеством языков, в том числе, русским.

spaCy [15] [ править ]

Библиотека, разработанная по методологии SCRUM на языке Cypthon, позиционируется как самая быстрая NLP библиотека. Имеет множество возможностей, в том числе, разбор зависимостей на основе меток, распознавание именованных сущностей, пометка частей речи, векторы расстановки слов. Не поддерживает русский язык.

scikit-learn [16] [ править ]

Библиотека scikit-learn разработана по методологии SCRUM и предоставляет реализацию целого ряда алгоритмов для обучения с учителем и обучения без учителя через интерфейс для Python. Построена поверх SciPy. Ориентирована в первую очередь на моделирование данных, имеет достаточно функций, чтобы использоваться для NLP в связке с другими библиотеками.

gensim [17] [ править ]

Python библиотека, разработанная по методологии SCRUM, для моделирования, тематического моделирования документов и извлечения подобия для больших корпусов. В gensim реализованы популярные NLP алгоритмы, например, word2vec. Большинство реализаций могут использовать несколько ядер.

Балто-славянские языки имеют сложную морфологию, что может ухудшить качество обработки текста, а также ограничить использование ряда библиотек. Для работы со специфичной русской морфологией можно использовать, например, морфологический анализатор pymorphy2 [18] и библиотеку для поиска и извлечения именованных сущностей Natasha [19]

Источник

Нейросетевой синтез речи своими руками

Синтез речи на сегодняшний день применяется в самых разных областях. Это и голосовые ассистенты, и IVR-системы, и умные дома, и еще много чего. Сама по себе задача, на мой вкус, очень наглядная и понятная: написанный текст должен произноситься так, как это бы сделал человек.

Некоторое время назад в область синтеза речи, как и во многие другие области, пришло машинное обучение. Выяснилось, что целый ряд компонентов всей системы можно заменить на нейронные сети, что позволит не просто приблизиться по качеству к существующим алгоритмам, а даже значительно их превзойти.

какая предобработка текста нужна для генерации речи. Смотреть фото какая предобработка текста нужна для генерации речи. Смотреть картинку какая предобработка текста нужна для генерации речи. Картинка про какая предобработка текста нужна для генерации речи. Фото какая предобработка текста нужна для генерации речи

Я решил попробовать сделать полностью нейросетевой синтез своими руками, а заодно и поделиться с сообществом своим опытом. Что из этого получилось, можно узнать, заглянув под кат.

Синтез речи

Чтобы построить систему синтеза речи, нужна целая команда специалистов из разных областей. По каждой из них существует целая масса алгоритмов и подходов. Написаны докторские диссертации и толстые книжки с описанием фундаментальных подходов. Давайте для начала поверхностно разберемся с каждой их них.

Лингвистика

Просодика

Фонетика

Акустика

Реализации

Мы попытаемся найти End-2-End (E2E) реализацию синтеза, которая бы взяла на себя все сложности, связанные с тонкостями языка. Другими словами, мы хотим построить систему, основанную на нейронных сетях, которая бы на вход принимала текст, а на выходе давала бы синтезированную речь. Можно ли обучить такую сеть, которая позволила бы заменить целую команду специалистов из узких областей на команду (возможно даже из одного человека), специализирующуюся на машинном обучении?

На запрос end2end tts Google выдает целую массу результатов. Во главе — реализация Tacotron от самого Google. Самым простым мне показалось идти от конкретных людей на Github, которые занимаются исследованиям в этой области и выкладывают свои реализации различных архитектур.

Я бы выделил троих:

Автор выложил результаты работы синтеза по трем различным базам и на разных стадиях обучения. На мой вкус, как не носителя языка, они звучат весьма прилично. Последняя из баз на английском языке (Kate Winslet’s Audiobook) содержит всего 5 часов речи, что для меня тоже является большим преимуществом, так как моя база содержит примерно сопоставимое количество данных.

Через некоторое время после того, как я обучил свою систему, в репозитории появилась информация о том, что автор успешно обучил модель для корейского языка. Это тоже довольно важно, так как языки могут сильно разниться и робастность по отношению к языку — это приятное дополнение. Можно ожидать, что в процессе обучения не потребуется особого подхода к каждому набору обучающих данных: языку, голосу или еще каким-то характеристикам.

Еще один важный момент для такого рода систем — это время обучения. Tacotron на том железе, которое у меня есть, по моим оценкам учился бы порядка 2 недель. Для прототипирования на начальном уровне мне показалось это слишком ресурсоемким. Педали, конечно, крутить не пришлось бы, но на создание какого-то базового прототипа потребовалось бы очень много календарного времени. DCTTS в финальном варианте учится за пару дней.

У каждого исследователя есть набор инструментов, которыми он пользуется в своей работе. Каждый подбирает их себе по вкусу. Я очень люблю PyTorch. К сожалению, на нем реализации DCTTS я не нашел, и пришлось использовать TensorFlow. Возможно в какой-то момент выложу свою реализацию на PyTorch.

Данные для обучения

Хорошая база для реализации синтеза — это основной залог успеха. К подготовке нового голоса подходят очень основательно. Профессиональный диктор произносит заранее подготовленные фразы в течение многих часов. Для каждого произнесения нужно выдержать все паузы, говорить без рывков и замедлений, воспроизвести правильный контур основного тона и все это в купе с правильной интонацией. Кроме всего прочего, не все голоса одинаково приятно звучат.

У меня на руках была база порядка 8 часов, записанная профессиональным диктором. Сейчас мы с коллегами обсуждаем возможность выложить этот голос в свободный доступ для некоммерческого использования. Если все получится, то дистрибутив с голосом помимо самих записей будет включать в себя точные текстовки для каждой из них.

Начнем

Мы хотим создать сеть, которая на вход принимала бы текст, а на выходе давала бы синтезированный звук. Обилие реализаций показывает, что это возможно, но есть конечно и ряд оговорок.

Основные параметры системы обычно называют гиперпараметрами и выносят в отдельный файл, который называется соответствующим образом: hparams.py или hyperparams.py, как в нашем случае. В гиперпараметры выносится все, что можно покрутить, не трогая основной код. Начиная от директорий для логов, заканчивая размерами скрытых слоев. После этого гиперпараметры в коде используются примерно вот так:

Далее по тексту все переменные имеющие префикс hp. берутся именно из файла гиперпараметров. Подразумевается, что эти параметры не меняются в процессе обучения, поэтому будьте осторожны перезапуская что-то с новыми параметрами.

Текст

Для обработки текста обычно используются так называемый embedding-слой, который ставится самым первым. Суть его простая — это просто табличка, которая каждому символу из алфавита ставит в соответствие некий вектор признаков. В процессе обучения мы подбираем оптимальные значения для этих векторов, а когда синтезируем по готовой модели, просто берем значения из этой самой таблички. Такой подход применяется в уже довольно широко известных Word2Vec, где строится векторное представление для слов.

Для примера возьмем простой алфавит:

В процессе обучения мы выяснили, что оптимальные значения каждого их символов вот такие:

Тогда для строчки aabbcc после прохождения embedding-слоя мы получим следующую матрицу:

Эта матрица дальше подается на другие слои, которые уже не оперируют понятием символ.

В этот момент мы видим первое ограничение, которое у нас появляется: набор символов, который мы можем отправлять на синтез, ограничен. Для каждого символа должно быть какое-то ненулевое количество примеров в обучающих данных, лучше с разным контекстом. Это значит, что нам нужно быть осторожными в выборе алфавита.

В своих экспериментах я остановился на варианте:

Это алфавит русского языка, дефис, пробел и обозначение конца строки. Тут есть несколько важных моментов и допущений:

Почти все системы оперируют не самим сигналом, а разного рода спектрами полученными на окнах с определенным шагом. Я не буду вдаваться в подробности, по этой теме довольно много разного рода литературы. Сосредоточимся на реализации и использованию. В реализации DCTTS используются два вида спектров: амплитудный спектр и мел-спектр.

Считаются они следующим образом (код из этого листинга и всех последующих взят из реализации DCTTS, но видоизменен для наглядности):

Для вычислений почти во всех проектах E2E-синтеза используется библиотека LibROSA (https://librosa.github.io/librosa/). Она содержит много полезного, рекомендую заглянуть в документацию и посмотреть, что в ней есть.

Теперь давайте посмотрим как амплитудный спектр (magnitude spectrum) выглядит на одном из файлов из базы, которую я использовал:

какая предобработка текста нужна для генерации речи. Смотреть фото какая предобработка текста нужна для генерации речи. Смотреть картинку какая предобработка текста нужна для генерации речи. Картинка про какая предобработка текста нужна для генерации речи. Фото какая предобработка текста нужна для генерации речи

Такой вариант представления оконных спекторов называется спектрограммой. На оси абсцисс располагается время в секундах, на оси ординат — частота в герцах. Цветом выделяется амплитуда спектра. Чем точка ярче, тем значение амплитуды больше.

Мел-спектр — это амплитудный спектр, но взятый на мел-шкале с определенным шагом и окном. Количество шагов мы задаем заранее, в большинстве реализаций для синтеза используется значение 80 (задается параметром hp.n_mels). Переход к мел-спектру позволяет сильно сократить количество данных, но этом сохранить важные для речевого сигнала характеристики. Мел-спектрограмма для того же файла выглядит следующим образом:

какая предобработка текста нужна для генерации речи. Смотреть фото какая предобработка текста нужна для генерации речи. Смотреть картинку какая предобработка текста нужна для генерации речи. Картинка про какая предобработка текста нужна для генерации речи. Фото какая предобработка текста нужна для генерации речи

Обратите внимание на прореживание мел-спектров во времени на последней строке листинга. Мы берем только каждый 4 вектор (hp.r == 4), соответственно уменьшая тем самым частоту дискретизации. Синтез речи сводится к предсказанию мел-спектров по последовательности символов. Идея простая: чем меньше сети приходится предсказывать, тем лучше она будет справляться.

Хорошо, мы можем получить спектрограмму по звуку, но послушать мы ее не можем. Соответственно нам нужно уметь восстанавливать сигнал обратно. Для этих целей в системах часто используется алгоритм Гриффина-Лима и его более современные интерпретации (к примеру, RTISILA, ссылка). Алгоритм позволяет восстановить сигнал по его амплитудным спектрам. Реализация, которую использовал я:

А сигнал по амплитудной спектрограмме можно восстановить вот так (шаги, обратные получению спектра):

Давайте попробуем получить амплитудный спектр, восстановить его обратно, а затем послушать.

Источник

Какая предобработка текста нужна для генерации речи

В предыдущий раз мы говорили о векторизации текстовых данных в NLP. Однако прежде чем преобразовать слова в числа, их следует обработать. Читайте в нашей статье о методах предобработки текста: токенизации, удалении стоп-слов, стемминге и лемматизации с Python-библиотеками pymorphy2 и NLTK.

Разбиваем текст на токены

Токенизация – процесс разбиения текста на текстовые единицы, например, слова или предложения. В случае разбиений на предложения задача кажется тривиальной, нужно просто найти точку, вопросительный или восклицательный знак. Но в русском языке существует сокращения, в которых есть точка, например, к.т.н. — кандидат технических наук или т.е. — то есть. Поэтому такой путь может привести к ошибкам. К счастью, Python-библиотека NLTK позволяет избежать этой проблемы. Рассмотрим пример:

Как видим, функция sent_tokenize разбила исходное предложения на два, несмотря на присутствие слов к.т.н. и т.е.

Помимо разбиения на предложения в NLTK можно в качестве токенов использовать слова:

Здесь к.т.н. и диван-кровать были определены как отдельные слова.

Исключаем стоп-слова из исходного текста

Иногда одних слов в тексте больше, чем других, к тому же они встречаются почти в каждом предложении и не несут большой информативной нагрузки. Такие слова являются шумом для последующего глубокого обучения (Deep Learning) и называются стоп-словами. Библиотека NLTK также имеет список стоп-слов, который предварительно необходимо скачать. Это можно сделать следующим образом:

После этого доступен список стоп-слов для русского языка:

Всего их насчитывается в этом списке 151. Вот некоторые из них:

Поскольку это список, то к нему можно добавить дополнительные слова или, наоборот, удалить из него те, которые будут информативными для вашего случая. Для последующего исключения слов из токенизированного текста можно написать следующее:

Стемминг: удаляем окончания

Проблемы могут возникнуть со словами, которые значительно изменяются в других формах:

Хотеть и хочу — грамматические формы одного и то же слова, но стемминг обрубает окончания согласно своему алгоритму. Поэтому возможно следует применить другой метод — лемматизацию.

Приведение к начальной форме с лемматизацией

Над словом можно провести морфологический анализ и выявить его начальную форму. Например, хочу, хотят, хотели имеют начальную форму хотеть. Тогда можем воспользоваться pymorphy2 — инструмент для морфологического анализа русского и украинского языков.

Рассмотрим пример для слова “хочу”:

Метод parse возвращает список объектов Parse, которые обозначают виды грамматических форм анализируемого слова. Такой объект обладает следующими атрибутами:

Таким образом, мы получили одно слово из разных его форм.

Как обрабатывать текстовые данные и применять их в реальных проектах Data Science для моделей Machine Learning с помощью Python, вы узнаете на наших курсах в лицензированном учебном центре обучения и повышения квалификации ИТ-специалистов в Москве.

Источник

Нормализация текста в задачах распознавания речи

При решении задач, связанных с распознаванием (Speech-To-Text) и генерацией (Text-To-Speech) речи важно, чтобы транскрипт соответствовал тому, что произнёс говорящий — то есть реально устной речи. Это означает, что прежде чем письменная речь станет нашим транскриптом, её нужно нормализовать.

Другими словами, текст нужно провести через несколько этапов:

какая предобработка текста нужна для генерации речи. Смотреть фото какая предобработка текста нужна для генерации речи. Смотреть картинку какая предобработка текста нужна для генерации речи. Картинка про какая предобработка текста нужна для генерации речи. Фото какая предобработка текста нужна для генерации речи

В этой статье я коротко расскажу о том, как развивалась нормализация в датасете русской речи Open_STT, какие инструменты использовались и о нашем подходе к задаче.

Как вишенка на торте, мы решили выложить наш нормализатор на базе seq2seq в открытый доступ: ссылка на github. Он максимально прост в использовании и вызывается одним методом:

Подробнее про задачу

Так в чём же, собственно, проблема? Сокращения на то и сокращения, что их можно легко привести к начальной форме. На самом деле, тут всё не так однозначно и без интуиции носителя языка во всех нюансах тяжело разобраться.

Чтобы показать, насколько глубока кроличья нора, приведу несколько примеров с числительными:

Не меньше проблем с расшифровкой сокращений: одна и та же аббревиатура может читаться по-разному в зависимости от контекста( г — город или год) и человека( БЦ — б ц или бизнес центр?). Думаю, что творится с транскрипцией других языков, вы уже и сами догадались. Особенно остро проблема стоит с обработкой разговорной речи.

Статистическая модель

Во всем этом многоообразии легко потеряться и уйти в бесконечный цикл с поиском и обработкой всё новых и новых кейсов. В какой-то момент лучше остановиться и вспомнить о принципе Парето. Вместо того, чтобы решать задачу в общем виде, мы можем обработать

20% самых частотных случаев, но покрыть

В первых релизах Open_STT мы подошли к решению ещё брутальней: видим число — заменяем его на дефолтное количественное числительное. С точки зрения STT такое решение было даже оправданным, всё-таки 2020 год лучше превратить в две тысячи двадцать год и ошибиться только в одном символе, чем проигнорировать целых три слова.

Постепенно мы подкрутили ещё контекстозависимость. Теперь числительные перед словом год становились порядковыми и 2020 год наконец превратилось в две тысячи двадцатый. Так появился наш «ручной» статистический пайплайн — находим наиболее популярные комбинации и добавляем их в набор правил.

Sequence to Sequence модели

В какой-то момент стало понятно, что архитектура sequence-to-sequence (seq2seq) идеально подходит под описание нашей задачи. Действительно, seq2seq умеет делать всё то же самое, что и «ручной» пайплайн, и даже больше:

какая предобработка текста нужна для генерации речи. Смотреть фото какая предобработка текста нужна для генерации речи. Смотреть картинку какая предобработка текста нужна для генерации речи. Картинка про какая предобработка текста нужна для генерации речи. Фото какая предобработка текста нужна для генерации речи

График attention весов для готовой модели на последовательности «5 января». Можно заметить, что для генерации окончания «пятОГО» модель учитывает не только «5», но и последующие символы из слова «января».

В качестве основы мы взяли реализацию модели seq2seq на PyTorch отсюда. Не будем подробно останавливаться на архитектуре — лучше прочитайте исходный пост. На вход подавалась последовательность символов из словаря русских букв + латиница + пунктуация + спец токены, на выходе — только русские буквы + пунктуация.

Очевидный факт — качество модели напрямую зависит от качества данных, на которых она училась. Найти такие данные в достаточном количестве для того же английского языка не составляет труда (более того, гуглятся даже готовые решения с открытым кодом) Но вот с русским пришлось попотеть.

Так, для обучающей выборки мы замиксовали:

Тестим TorchScript

Нашей целью было не только решение задачи, но и тест разных интересных вещей, одним из которых стал Torchscript.

TorchScript — это замечательный инструмент из PyTorch, с помощью которого можно выкатить свою модель далеко за рамки Python и даже встроить в C++.

Если коротко, PyTorch даёт нам на выбор два пути:

Как оказалось, для чуть более сложных моделей, чем те, что представлены в гайде, придётся переписать пару строк кода. Однако, тут можно обойтись малой кровью: подумать о типизации, переписать неподдерживаемые функции и т.д. Больше подробностей в посте на канале.

Примеры работы

Как итог, приведу несколько примеров работы уже готового нормализатора. Все предложения взяты из тестового корпуса, то есть во время тренировки модель с ними не встречалась.

‘Вторая по численности группа — фарсиваны — от двадцати семи до тридцати восьми процентов.’

‘Висенте Каньяс родился двадцать второго октября тысяча девятьсот тридцать девятого года’

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *