какая прямая делит угол пополам
Какая прямая делит угол пополам?
Прямая которая делит угол пополам называется биссектриса.
В советские времена была радиопередача, которая называлась «Радионяня», в этой передаче в форме коротеньких стишочков и песенок излагались все правила правописания и математики. Так вот, из Радионяни вам:
Из школьного курса геометрии известно, что угол пополам делит прямая под названием биссектриса.
В школьном фольклоре из поколения в поколение передается простая и запоминающаяся формулировка: «Биссектриса – это такая крыса, которая бегает по углам и грызет угол пополам».
Угол образуется двумя лучами, выходящими из одной точки.
Совсем несложно найти угол между катетом и гипотенузой.
Сумма углов в треугольнике равна 180 градусам, один из них равен 90 градусам и если известно значение второго острого угла, нужно от 90 градусов отнять это значение.
если известны величины сторон прямоугольного треугольника, тогда угол можно найти по этим формулам, используя при этом таблицы значений синусов, косинусов и тангенсов.
Но бывает и такое. что под рукой как назло нет этих табличек, тогда угол между катетом и гипотенузой можно просто измерить с помощью транспортира, но если и его нет, тогда
угол в прямоугольном треугольнике между катетом и гипотенузой можно определить с помощью обычной линейки и карандаша
меньший катет удлиняем к размеру большого. соединяем, откладываем на новой гипотенузе длину большего катета.
С вершины прямого угла прикладываем линейку и измеряем расстояние между синими отрезками и между вершиной треугольника и гипотенузой.
Сравнить два угла на глаз невозможно, ведь отличаться они могут совсем на немного и тогда нам будет казаться, что углы равные, хотя на самом деле один больше другого. Поэтому обычно сравнивают углы либо измерением с помощью например транспортира, или наложением если такое возможно.
И тот и другой вариант имеют свою погрешность, но если абсолютная точность не требуется, то они вполне годятся.
При наложении углы просто накладываются друг на друга, чтобы совместились вершина угла и одна сторона обоих углов. Тогда по взаимоположению второй стороны этих углов можно сделать вывод о равенстве или неравенстве углов.
Просто поделить на два. Если угол треугольника С опирается на дугу в 48 градусов, то сам он в два раза меньше и равен двадцати четырем градусам. Угол треугольника равен половине градусной меры дуги, на которую он опирается.
Элементарно. Построить этот угол 19 раз по окружности (вершины всех углов располагаются в одной точке) вплотную один к другому. 19 х 19 = 361 градус. Угол между начальной и конечной линиями и будет 1 градус.
Другой способ. Чертите циркулем окружность. Ставите ножку циркуля в любую точку этой окружности (пусть это точка А), и делаете засечку на окружности. Получаете точку В. Далее, ставите ножку циркуля в точку В и делаете следующую засечку (С) и так далее, пока очередная (шестая) засечка не «придёт» в точку А. Соединяете через одну любые три точки и получаете равносторонний треугольник с углами по 60 °.
Деление угла пополам. Пусть дан угол в вершиной А. Ставите ножку циркуля в вершину угла и проводите дугу, так, чтобы она пересекла обе стороны угла. Обозначаете точки пересечения В и С. Теперь, ставите ножку циркуля последовательно в точки В и С и проводите дуги одинакового радиуса (не обязательно равного АВ и АС), до их пересечения. Точку пересечения этих дуг обозначаете D. Через точки А и D проводите прямую линию. Она является биссектрисой заданного угла), т.е. делит его пополам.
Таким образом, разделив угол 60 ° пополам, получите угол в 30 °, а разделив пополам его, получите угол в 15 °.
Биссектриса — свойства, признаки и формулы
Базовым понятием и одним из наиболее интересных и полезных объектов школьной математики является биссектриса. С её помощью доказываются многие положения планиметрии, упрощается решение задач.
Известные свойства позволяют рассматривать геометрические фигуры с разных точек зрения. Появляется вариативность при выборе пути доказательств.
Становится возможным использование инструмента алгебры, например, свойство пропорции, нахождение неизвестных величин, решение алгебраических уравнений при рассмотрении геометрических вопросов.
Что такое биссектриса в геометрии
Рассматривают луч, выходящий из вершины угла или его часть (отрезок), который делит угол пополам. Такой луч (или, соответственно, отрезок) называется биссектрисой.
Часто для треугольников определение немного сужают, говоря об отрезке, соединяющем вершину угла, делящем его пополам, с точкой на противолежащей стороне. При этом рассматривается внутренняя область фигуры.
В то же время, часто при решении задач используются прямые, делящие внешние углы на два равных.
Биссектриса прямоугольного треугольника
Для прямоугольного треугольника одна из биссектрис образует равные углы, величины которых хорошо просчитываются (45 градусов).
Это помогает вычислять углы при решении задач, связанных с фигурами, которые можно представить в виде прямоугольных треугольников или прямоугольников.
Свойства биссектрисы треугольника
1. Каждая точка этой линии равноудалена от сторон угла. Часто эту характеристику выбирают в качестве определения, поскольку верно и обратное утверждение для любого произвольного треугольника. Это позволяет находить и радиус вписанной окружности.
2. Все внутренние отрезки, делящие углы пополам, пересекаются в одной точке, которая является центром окружности, вписанной в фигуру, т. е. точка пересечения находится на равных расстояниях от сторон.
Данное свойство позволяет решать целый класс разнообразных задач, выводить формулы для радиусов вписанных окружностей правильных многоугольников.
Благодаря этому утверждению, легко доказывается следующее правило:
Площадь описанного многоугольника равна:
где p – полупериметр, а r – радиус вписанной окружности.
Это позволяет находить решение не только планиметрических, но и стереометрических задач.
Важную роль играют внешние биссектрисы треугольника. Вместе с внутренними они образуют прямые углы;
3. Сумма величин двух прилежащих сторон, делённая на длину противолежащей стороны, задаёт отношение частей биссектрисы (считая от вершины), полученных точкой пересечения всех трёх соответствующих линий.
Некоторые виды геометрических фигур, в силу своих особенностей, порождают особые примечательные характеристики;
4. В равнобедренном треугольнике биссектриса, проведённая к основанию, одновременно является медианой и высотой. Две другие – равны между собой.
В этом случае основание параллельно внешней биссектрисе.
Обратное положение также имеет место. Если прямая проведена параллельно основанию равнобедренного треугольника через некоторую вершину, то внешняя биссектриса при этой вершине является частью этой линии;
5. Для равностороннего многоугольника важной характеристикой считается равенство всех биссектрис;
6. У правильного треугольника все внешние биссектрисы параллельны сторонам;
7. Выделяют несколько особенностей, среди которых есть следующая теорема:
«Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам».
Обратное утверждение («Прямая делит сторону на отрезки, пропорциональные двум другим сторонам») выражает признаки того, что рассматриваемая линия является внутренней биссектрисой;
8. Разносторонний треугольник позволяет определить взаимное расположение его высоты, медианы и биссектрисы, проведённых из одной точки. В частности, медиана и высота располагаются по разные стороны от третьей линии.
Все формулы биссектрисы в треугольнике
В зависимости от исходных данных, длина биссектрисы, проведённой к стороне C, lc, равна:
Примеры решения задач
Задача №1
В ΔABC ∠C = 90°, проведена биссектриса острого угла. Отрезок, соединяющий её основание с точкой пересечения медиан, перпендикулярен катету. Найти углы заданной фигуры.
Пусть ∠ACB = 90°, AD – биссектриса, BE – медиана, O – точка пересечения медиан, OD⊥BC.
Тогда OE : OB = 1 : 2по свойству медиан.
Так как OD⊥BC, то ODIIOC, следовательно, ΔBOD ∼ ΔBEC по второму признаку подобия, поэтому, по свойству подобных фигур, CD : DB = 1 : 2.
Это означает, что CA : AB = 1 : 2.
Так как катет равен половине гипотенузы, то ∠ABC = 30°, откуда ∠CAB = 60°.
Задача №2
Диагональ параллелограмма делит его острый угол пополам. Доказать, что этот параллелограмм является ромбом.
Так как ABCD – параллелограмм, то ∠DAC = ∠ACB, как накрест лежащие при параллельных прямых AD, BC и секущей AC.
По условию, ∠DAC = ∠ACB = ∠BAC, поэтому ΔACB равнобедренный, то есть AB = BC, следовательно, ABCD – ромб.