какая радиация в космосе в цифрах

Что мы знаем о космической радиации

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Что такое космическая радиация

Это электромагнитное излучение, которое имеет внеземной источник. Его подразделяют на первичное и вторичное излучение. Иногда космическое излучение еще называют космическими лучами.

Первичные космические лучи представляют собой поток заряженных ядерных частиц, который проходит через поверхность Земли, появляясь из различных участков космического пространства. Источником появления этих частиц стоит считать космическую энергию, которую высвобождают сверхновые (взорвавшиеся звезды), а также всеми любимое Солнце — оно является наиболее постоянным поставщиком космического излучения.

Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы, так называемый солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы — солнечной короны. Вблизи Земли его скорость составляет обычно 400–500 км/с.

В свою очередь, «вспышки» на Солнце — выбросы дополнительной корпускулярной энергии — провоцируют магнитные бури и полярные сияния, а также представляют угрозу для жизни космонавтов при выходе в открытый космос.

Кстати, эти «вспышки» и высвобождаемая ими энергия — один из главных аргументов в пользу теории о том, что американцы на Луну не высаживались. Сторонники «лунного заговора» заявляют, что американские астронавты неминуемо погибли бы от лучевой болезни по причине того, что на поверхности спутника нет магнитного поля. К тому же экипаж «Аполлона-11» во главе с Нилом Армстронгом пересек радиационные пояса Земли, а значит, должен был получить колоссальные дозы облучения.

В теории всё верно, но на деле астронавты подвергались действию космической радиации всего в течение нескольких часов и получили дозы облучения, сопоставимые с теми, что обычно получают космонавты на МКС, то есть они были приемлемыми. Также нужно принять во внимание факт везения, ведь во время лунной миссии на Солнце не произошло никаких энергетических выбросов, которые могли бы привести к сублетальным дозам радиации.

Вторичные же космические лучи формируются при столкновении частиц космических лучей с частицами воздуха. Чем глубже эти частицы проникают в атмосферу, тем больше энергии они теряют. Это объясняет явление, о котором ты прочтешь ниже.

На какой высоте встречается

Вообще, космическая радиация распространяется повсеместно, но благодаря наличию у Земли магнитного поля она рассеивается. Магнитное поле служит своеобразным щитом, который не позволяет Солнцу — источнику этой радиации — уничтожить всё живое.

Так, на поверхности Земли естественный радиационный фон колеблется в пределах отметки 0,1–0,20 мкЗв/час (10–20 мкР/час), что является безопасной мощностью дозы для человека.

Однако чем выше мы поднимаемся, тем больше растет уровень радиации. Особенно наглядно это иллюстрируется на примере авиационных полетов. Специалисты из «Интерсофт Евразия» провели исследование на основе своих гаджетов DO-RA и замерили показатели космического излучения на разной высоте. Вот что у них получилось.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Как видишь, при наборе высоты показатели на дозиметре пропорционально увеличивались. С чем это связано — попробуй догадаться самостоятельно.

Чем опасна космическая радиация

Наверняка ты смотрел сериал «Чернобыль». Люди, пострадавшие при аварии и ликвидации ее последствий, конечно, получили несоизмеримые дозы облучения в сравнении с теми, что встречаются на борту самолета. Но и эти оказывают свое негативное воздействие на организм.

Наиболее чувствительными к радиации являются кожа, хрусталик глаза, легкие, щитовидная железа, костный мозг и кишечник. При длительном воздействии на организм излучение поражает ДНК и РНК, нарушает обмен веществ, снижает иммунитет и активизирует развитие новообразований у человека и животных.

Кто в зоне риска (как раз здесь о пилотах и часто летающих людях)

Не пугайся раньше времени. Среди профессий, наиболее подверженных радиоактивному космическому излучению, лидируют бортпроводники и летчики. Ну и пассажиры самолетов, часто пользующиеся услугами авиакомпаний. Часто — это более 30 раз в год. Пассажир, конечно, не профессия, но не упомянуть об этом в данном контексте нельзя.

Из-за активного эффекта воздействия ионизирующего излучения на человека и системы организма в авиации введены специальные радиационные нормы для лётного персонала. Эти нормы ограничивают полеты авиационного состава из расчета не более 80 лётных часов в месяц, не более 240 лётных часов в квартал (3 месяца) и не более 800 лётных часов в год на человека. Это данные из регламента ICAO — Международной организации гражданской авиации.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Как обезопаситься

Мы бы не сказали, что нужно применять какие-то сверхмеры по защите себя от излучения. Чтобы по-настоящему ощутить на себе влияние космической радиации, необходимо проводить в полете не менее 33 часов в год. За это время можно получить дозу в 0,1 мЗв (миллизиверт) — это эквивалентно рентгену грудной клетки.

Чтобы контролировать все возможные изменения в работе собственного организма, необходимо регулярно проходить диспансеризацию, примерно раз-два в год. При таком подходе к своему здоровью всё будет в порядке.

«Интерсофт Евразия» — компания, созданная для реализации инновационных проектов в области носимой электроники, дозиметрической техники и технологий. Направления работы компании: разработка программного обеспечения, технологии производства твердотельных детекторов ионизирующего излучения и электроники чтения, систем мониторинга радиационной обстановки.

Источник

Curiosity рассказал о радиации в космосе

Curiosity имеет на борту прибор RAD для определения интенсивности радиоактивного облучения. В ходе своего полета к Марсу Curiosity производил замеры радиационного фона, а сегодня об этих результатах рассказали ученые, которые работают с NASA. Поскольку марсоход летел в капсуле, а датчик радиации располагался внутри, то эти замеры практически соответствуют тому радиационному фону, который будет присутствовать в пилотируемом космическом корабле.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Результат не вдохновляет — эквивалентная доза поглощенного радиационного облучения в 2 раза превосходит дозу МКС. И в четыре — ту, которая считается предельно допустимой для АЭС.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

То есть шестимесячный полет к Марсу примерно равносилен 1 году проведенному на околоземной орбите или двум на атомной электростанции. Учитывая, что общая длительность экспедиции должна составить около 500 суток, перспектива открывается не оптимистичная.
Для человека накопленная радиация в 1 Зиверт повышает риск раковых заболеваний на 5%. NASA позволяет своим астронавтам за свою карьеру, набирать не более 3% риска или 0,6 Зиверта. С учетом того, что на МКС ежедневная доза составляет до 1 мЗв, то предельный срок пребывания астронавтов на орбите ограничивается примерно 600 сутками за всю карьеру.
На самом Марсе радиация должна быть примерно в два раза ниже чем в космосе, из-за атмосферы и пылевой взвеси в ней т.е. соответствовать уровню МКС, но точных показателей еще не публиковали. Интересны будут показатели RAD в дни пылевых бурь — узнаем насколько марсианская пыль является хорошим радиационным экраном.

Сейчас рекорд пребывания на околоземной орбите принадлежит 55-летнему Сергею Крикалеву — на его счету 803 суток. Но он набрал их с перерывами — всего он совершил 6 полетов с 1988 по 2005 год.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Прибор RAD состоит из трех кремниевых твердотельных пластин, выступающих в качестве детектора. Дополнительно он имеет кристалл йодида цезия, который используется в качестве сцинтилятора. RAD установлен так, чтобы во время посадки смотреть в зенит и захватывать поле в 65 градусов.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Фактически это радиационный телескоп, который фиксирует ионизирующие излучения и заряженные частицы в широком диапазоне.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Радиация в космосе возникает в основном из двух источников: от Солнца — во время вспышек и коронарных выбросов, и от космических лучей, которые возникают во время взрывов сверхновых или других высокоэнергетических событий в нашей и других галактиках.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах
На иллюстрации: взаимодействие солнечного «ветра» и магнитосферы Земли.

Космические лучи составляют основную долю радиации в межпланетном путешествии. На них приходится доля излучения в 1,8 мЗв в сутки. Лишь три процента облучения накоплено Curiosity от Солнца. Это связано еще и с тем, что полет проходил в сравнительно спокойное время. Вспышки повышают суммарную дозу, и она приближается к 2 мЗв в сутки.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах
Пики приходятся на солнечные вспышки.

Нынешние технические средства более эффективны против солнечной радиации, которая имеет невысокую энергию. Например, можно оборудовать защитную капсулу, где космонавты смогут скрываться во время солнечных вспышек. Однако, от межзвездных космических лучей не защитят даже 30 см алюминиевые стены. Свинцовые, вероятно, помогли бы лучше, но это значительно повысит массу корабля, а значит затраты на его выведение и разгон.

Наиболее эффективным средством минимизации облучения должны стать новые типы двигателей, которые существенно сократят время полета до Марса и обратно. NASA сейчас работает над солнечным электрореактивным двигателем и ядерным тепловым. Первый может в теории разогнаться до 20 раз быстрее современных химических двигателей, но разгон будет очень долгим из-за малой тяги. Аппарат с таким двигателем предполагается направить для буксировки астероида, который NASA хочет захватить и перевести на окололунную орбиту для последующего посещения астронавтами.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Наиболее перспективные и обнадеживающие разработки по электрореактивным двигателям ведутся по проекту VASIMR. Но для путешествия к Марсу солнечных панелей будет недостаточно — понадобится реактор.

Ядерный тепловой двигатель развивает удельный импульс примерно втрое выше современных типов ракет. Суть его проста: реактор нагревает рабочий газ (предполагается водород) до высоких температур без использования окислителя, который требуется химическим ракетам. При этом предел температуры нагрева определяется только материалом из которого изготовлен сам двигатель.
какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Но такая простота вызывает и сложности — тягой очень сложно управлять. NASA пытается решить эту проблему, но не считает разработку ЯРД приоритетной работой.

Применение ядерного реактора еще перспективно тем, что часть энергии можно было бы пустить на генерацию электромагнитного поля, которое бы дополнительно защищало пилотов и от космической радиации, и от излучения собственного реактора. Эта же технология сделала бы рентабельной добычу воды на Луне или астероидах, то есть дополнительно стимулировала коммерческое применение космоса.
Хотя сейчас это не более чем теоретические рассуждения, не исключено, что именно такая схема станет ключом к новому уровню освоения Солнечной системы.

Источник

50 лет назад один человек совершил маленький шажок, который оказался большим шагом для всего человечества. Мы говорим, как вы поняли, о знаменитой высадке американских астронавтов на Луну. И в последнее время споры вокруг той миссии (как и самой программы «Аполлон») разгорелись с новой силой. Причем речь идет не о том, что «высадки не было и все было снято в павильоне». Новые аргументы говорят нам, что во время миссии на Луну астронавты должны были получить огромную дозу космической радиации, которую невозможно пережить. Но так ли это?

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Что такое космическая радиация

Никто не собирается оспаривать факт того, что космическая радиация действительно существует и то, что воздействие ее на живые организмы очень сложно назвать положительным. Сам термин «космическая радиация» довольно обширен и используется для описания энергии, которая излучается в виде электромагнитных волн и/или других частиц, испускаемых небесными телами. При этом не все они являются опасными для человека. Например, люди могут воспринимать некоторые формы электромагнитного излучения: видимый свет можно (простите за тавтологию) увидеть, а инфракрасное излучение (тепло) можно почувствовать.

Между тем, другие разновидности излучения, такие как радиоволны, рентгеновские и гамма-лучи требуют специального оборудования для наблюдения. Самым опасным является ионизирующее излучение и именно его воздействие в большинстве случаев и называют той самой космической радиацией.

Откуда берется космическая радиация

В космосе существует несколько источников ионизирующего излучения. Солнце непрерывно испускает электромагнитное излучение на всех длинах волн. Иногда огромные взрывы на солнечной поверхности, известные как вспышки на Солнце, высвобождают в космос огромное количество рентгеновских и гамма-лучей. Эти явления как раз и могут представлять опасность для астронавтов и оборудования космических аппаратов. Также опасная радиация может исходить из-за пределов нашей Солнечной системы, но на Земле мы защищены от большей части этого ионизирующего излучения. Сильное магнитное поле Земли формирует магнитосферу (грубо говоря, защитный пузырь), который действует как своего рода «щит», блокирующий большую часть опасного излучения.

При этом космическая радиация «не улетает» обратно в космос. Она накапливается вокруг нашей планеты, формируя, так называемые, Пояса Ван Аллена (или радиационные пояса).

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Как NASA решило проблему организации полета на Луну

Короткий ответ — никак. Дело в том, что для того, чтобы добраться до Луны, космический аппарат должен двигаться максимально быстро и по кратчайшему расстоянию. Для «облета и маневрирования» не хватило бы ни времени, ни запаса горючего. Таким образом, участники программы должны были пересечь как внешний, так и внутренний радиационный пояса.

NASA знало о проблеме и поэтому им нужно было что-то делать с обшивкой корабля для астронавтов. Обшивка должна была быть тонкой и легкой для обеспечения защиты. Нельзя было слишком «утяжелять» ее. Поэтому минимальная защита от облучения при помощи металлических пластин была добавлена в конструкцию. Более того, теоретические модели радиационных поясов, разработанные в преддверии полетов «Аполлона», показали, что прохождение через них не будет представлять существенной угрозы для здоровья космонавтов.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Но это еще не все. Чтобы добраться до Луны и благополучно вернуться домой, астронавты «Аполлона» должны были не только пересечь пояса Ван Аллена, но и огромное расстояние между Землей и Луной. По времени полет занимал около трех дней в каждую сторону. Участники миссии также должны были безопасно работать на орбите вокруг Луны и на лунной поверхности. Во время миссий «Аполлон» космический аппарат большую часть времени находился за пределами защитной магнитосферы Земли. Таким образом, экипажи «Аполлонов» были уязвимы для солнечных вспышек и для потока радиационных лучей из-за пределов нашей Солнечной системы.

Почему астронавты остались живы?

Можно сказать, что NASA повезло, ведь время миссии совпало с, так называемым, «солнечным циклом». Это период роста и спада активности, который происходит примерно каждые 11 лет. На момент запуска аппаратов как раз пришелся период спада. Однако если бы космическое агентство затянуло программу, то все могло бы закончится иначе. Например, в августе 1972 года, между возвращением на Землю «Аполлона-16» и запуском «Аполлона-17» начался период роста солнечной активности. И если бы в это время астронавты находились бы на пути к Луне, они получили бы огромную дозу космического излучения. Но этого, к счастью, не произошло.

Обсудить эту и другие новости вы можете в нашем чате в Телеграм.

Источник

Угроза из космоса. Какому излучению подвергаются космонавты и наша планета?

Космическое излучение является ключевым фактором безопасности космонавтов, отправляющихся на Луну. Исследователи и инженеры изучают различные методы и технологии для снижения различных типов излучения во время космических путешествий. Рассказываем, каким опасностям подвергаются астронавты в космосе и как НАСА пытается их защищать для будущих исследований.

Читайте «Хайтек» в

За последнее время тема освоения и колонизации Марса вышла из ряда научной фантастики. США, Европа, Россия и впервые Китай и ОАЭ запускают все новые миссии и космические программы не только по освоению космоса, но и особое внимание уделяя Марсу. Кроме того, НАСА планирует «вернуть астронавтов на Луну» в программе Artemis. Все это — не только захватывающе и завораживающе, но и пугающе. На Земле мы в относительной безопасности, с нашей атмосферой и достаточным расстоянием от Солнца. Но что происходит с людьми, когда они покидают безопасную зону?

Им угрожает радиация.

Радиация из космоса

В первую очередь для людей опасны частицы энергии, которые вылетают из Солнца в результате гигантских солнечных извержений.

В дополнение к вспышкам, огромные облака — выбросы корональной массы — содержащие миллиард тонн солнечного материала, иногда взрываются на поверхности Солнца. Все чаще ученые считают, что выбросы корональной массы играют доминирующую роль в управлении самым мощным излучением Солнца: солнечными энергетическими частицами или SEP (Solar energetic particles).

SEP — это частицы (по большей части протоны, а также электроны и ионы), летящие с такой высокой скоростью, что некоторые из них достигают Земли, находящейся на расстоянии 150 млн км, менее чем за час.

Излучение — это энергия, заключенная в электромагнитные волны или переносимая частицами. Энергия передается, когда волна или частица сталкиваются с чем-то еще, например, с космонавтом или компонентом космического корабля. SEP опасны, потому что они могут проходить через кожу, выделяя энергию и разрушая клетки или ДНК на своем пути. Такие повреждения могут увеличить риск рака в более позднем возрасте или, в крайних случаях, вызвать острую лучевую болезнь в краткосрочной перспективе.

Почему на Земле люди в безопасности?

На Земле люди застрахованы от этого вреда. Но почему?

Защитный «магнитный пузырь» Земли — магнитосфера — отклоняет большинство солнечных частиц. Атмосфера также подавляет любые частицы, которые проникают сквозь нее. Международная космическая станция движется по низкой околоземной орбите, находясь под защитой Земли, а корпус станции также помогает защитить членов экипажа от радиации.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Земля находится в центре огромного голубого пузыря в форме кометы.

Магнитный пузырь Земли, называемый магнитосферой, показан синим цветом. Магнитосфера обеспечивает естественную защиту от космического излучения, отклоняя большинство заряженных солнечных частиц от Земли.

Предоставлено: Космический центр Андёя/Тронд Абрахамсен

Но за пределами магнитной досягаемости Земли человеческие исследователи могут столкнуться с резкой радиацией космоса.

Стратегия защиты космонавтов

Основная стратегия аналитической группы при работе в космосе — использовать любую доступную массу на корабле. Они перераспределяют ее таким образом, чтобы заполнить области, которые защищены недостаточно, и направляют членов экипажа к хорошо защищенным областям.

Чем больше масса между экипажем и излучением, тем больше вероятность того, что опасные частицы передадут свою энергию, прежде чем достигнут экипажа. На Луне астронавты могут насыпать лунный грунт или реголит над своими убежищами, используя в своих интересах естественные защитные материалы окружающей среды. Но что касается конструкции космического корабля, то полагаться на его габариты для защиты вскоре становится дорого, поскольку для запуска большей массы требуется больше топлива.

Команда Джонсона работает над разработкой методов экранирования без добавления дополнительных материалов. У астронавтов не будет возможности летать на «специальной радиационной защите». Законы распределения полезного груза на корабле таковы, что каждый предмет, с которым летит команда астронавтов, должна быть многоцелевым.

Для космического корабля Orion они разработали план для астронавтов по строительству временного убежища из имеющихся материалов под рукой, в том числе единиц хранения, уже находящихся на борту, или запасов еды и воды. Если на Солнце разразится еще один шторм, такой же сильный, как в эпоху миссий Аполлона, экипаж «Ориона» будет в целости и сохранности.

Другие команды в НАСА решают проблему радиации с помощью творческих решений, разрабатывая такие технологии, как носимые жилеты и устройства, увеличивающие массу, а также электрически заряженные поверхности, которые отклоняют радиацию.

Кроме того, Опытный дизайнер космических скафандров Эми Росс в Космическом центре имени Джонсона в НАСА в Хьюстоне разрабатывает новые костюмы для Луны и Марса. Именно образцы ее прототипов скафандра отправились на Марс в миссии «Настойчивость» для проверки и анализа.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Как защититься от Солнца? Основные проблемы

Чтобы защитить астронавтов от бурь с частицами солнечной энергии, необходимо знать, когда такая буря произойдет. Но потоки частиц непостоянны и их трудно предсказать. Природа турбулентных извержений Солнца еще полностью не изучена.

В идеале вы могли бы посмотреть на активную область на Солнце, увидеть, как она развивается, и попытаться предсказать, когда произойдет извержение. Проблема в том, что даже если бы вы могли спрогнозировать вспышки и выбросы корональной массы, только небольшая часть на самом деле порождает частицы, опасные для астронавтов.

Ричардсон

И если SPE действительно появятся, трудно предсказать, куда они пойдут. Силовые линии магнитного поля — это магистраль для заряженных частиц, но когда Солнце вращается, дороги превращаются в спирали. Некоторые частицы выбиваются из-за перегибов силовых линий. В результате они могут распространяться по всей Солнечной системе в виде огромного туманного облака.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Модели, позволяющие предсказать, когда появятся SEP, находятся на ранних стадиях разработки. Одна из них использует прибытие более легких и быстрых электронов для прогнозирования потока более тяжелых протонов, которые последуют за ним, которые более опасны.

Ученые полагаются на гелиофизические миссии НАСА для развития моделей прогнозирования космической погоды. Это помогает расположить космические корабли в разных точках обзора между Солнцем и Землей. Запущенный в 2018 году солнечный зонд НАСА Parker Solar Probe летит ближе к Солнцу, чем любой другой космический корабль до него. Космический аппарат будет отслеживать SEP вблизи их источника. Это и станет ключом к разгадке того, как солнечные извержения ускоряют частицы.

Время тоже имеет значение. Солнце проходит через 11-летние циклы высокой и низкой активности. Во время солнечного максимума Солнце покрыто областями с высоким магнитным напряжением, которые готовы к извержению. Во время солнечного минимума, когда солнечных пятен мало или совсем нет, извержения редки.

В то время как ученые продолжают совершенствовать свои модели, гелиофизические космические аппараты НАСА уже сейчас обеспечивают наблюдения, чтобы дать астронавтам всю полноту картины, понимание и прогнозирование опасностей. И, главное, разрешение на выполнение миссий. Если на Солнце нет активных пятен, ученые могут с уверенностью сказать, что солнечного шквала не будет.

Еще одна опасность. Излучение из соседних галактик

Второй вид космического излучения распространяется даже дальше, чем частицы солнечной энергии. Галактические космические лучи — частицы давно ушедших взорвавшихся звезд в другом месте Млечного пути — постоянно бомбардируют Солнечную систему со скоростью, близкой к световой. Если солнечные энергетические частицы — это внезапный ливень, то галактические космические лучи больше похожи на устойчивую морось. Но моросящий дождь тоже может доставлять неудобства.

какая радиация в космосе в цифрах. Смотреть фото какая радиация в космосе в цифрах. Смотреть картинку какая радиация в космосе в цифрах. Картинка про какая радиация в космосе в цифрах. Фото какая радиация в космосе в цифрах

Солнечная система находится в центре двух больших пурпурных пузырей, представляющих гелиосферу. Золотые полосы отражаются повсюду.

Это изображение показывает Солнечную систему и магнитный пузырь Солнца, гелиосферу который простирается далеко за его пределы. Яркие полосы представляют собой космические лучи. Во время солнечного максимума, когда гелиосфера усиливается, она блокирует больше космических лучей.

Центр космических полетов имени Годдарда НАСА/Лаборатория концептуальных изображений

Космические лучи имеют тенденцию быть более мощными, чем даже самые энергичные солнечные частицы. Тот же космический корабль, который защитит команду от частиц солнечной энергии, не сможет удерживать космические лучи на расстоянии, поэтому космические лучи представляют серьезную проблему, особенно для длительных миссий, таких как путешествие на Марс, которое займет от шести до 10 месяцев.

Хотя SEP сложно предсказать, галактические космические лучи приходят с постоянной скоростью. За одну секунду около 90 космических лучей попадают в космическую точку размером с мяч для гольфа. Между тем, во время ливня SEP могло быть еще 1 000 частиц, проникающих через это пространство размером с мяч для гольфа. Эта скорость помогает определить пределы излучения и продолжительность миссии. В этом состоит ведущая стратегия НАСА по ограничению воздействия космических лучей. НАСА отслеживает индивидуальные дозы астронавтов, чтобы гарантировать, что они не подвергаются излишнему излучению.

Воздействие космических лучей также связано с солнечным циклом. В относительном штиле солнечного минимума космические лучи легко проникают в магнитное поле Солнца. Но во время солнечного максимума магнитный пузырь Солнца усиливается с увеличением солнечной активности, отталкивая некоторых незваных гостей из галактик. Как ни странно, вредное излучение помогает нейтрализовать другое опасное излучение.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *