какая разновидность технологий семейства xdsl обеспечивает ассиметричный канал передачи данных
Асимметричные технологии xDSL
Если первоначально развитие симметричных технологий xDSL, в основном, было ориентировано на потребности делового сектора, то асимметричные технологии xDSL были предназначены для частного сектора. Такой подход определил существенную разницу в требованиях к ним. В частном секторе было необходимо, чтобы уже существующая телефонная служба (ТФОП — телефонная сеть общего пользования или BRI-ISDN — базовый (основной) доступ цифровой сети интегрального обслуживания) — продолжала работать и при переходе на ADSL. Иначе говоря, помимо телефонной службы требовалось обеспечить и передачу данных. С целью разделения речевых сигналов и сигналов передачи данных введены частотные разветвительные фильтры (разветвители — сплиттеры).
Рисунок 2.3 – Классификация ADSL.
В последние годы разработаны так же более высокоскоростные технологии DSL, например, такие как ADSL и VDSL. Технология асимметричной цифровой абонентской линии ADSL (Asymmetric DSL) обеспечивает передачу до 8 Мбит/с в направлении «от сети к абоненту» и до 640 кбит/с в на правлении «oт абонента к сети» и весьма перспективной для доступа к сети интернет.
Преимущества технологии ADSL:
ü Телефон всегда свободен: технология ADSL предлагает возможность избавиться от трудной дилеммы и даёт возможность телефонного разговора и передачи данных одновременно.
ü Соединение постоянно: используя подключение к Интернету по технологии ADSL, Вы получаете возможность круглосуточного доступа к мировым информационным ресурсам без периодического «дозвона». ADSL предоставляет круглосуточный «On-Line» доступ к Интернет, помогая Вам сэкономить время и деньги.
ü Высокая скорость доступа: Технология ADSL обеспечивает скоростные преимущества, позволяющие передавать информацию к абоненту со скоростью до 8 Мбит/с.
Вопрос: Технологии линейного кодирования xDSL.
Главными факторами, влияющими на качество работы оборудование xDSL, являются параметры линии связи:
2. Нелинейность АЧХ. Как правило, кабельная линия связи представляет собой фильтр низких частот.
3. Перекрестные наводки на ближнем и дальнем окончаниях
4. Радиочастотная интерференция
5. Групповое время задержки. Скорость распространения сигнала в кабеле зависит от его частоты, таким образом, даже при равномерной АЧХ форма импульса при передаче искажается.
Основу оборудования хDSL составляет линейный тракт, в различных видах аппаратуры xDSL, применяемой на сетях абонентского доступа, используют различные виды линейных сигналов. Основные требования к линейным сигналам:
ü энергетический спектр передаваемых цифровых сигналов должен быть сосредоточен в относительно узкой полосе частот при отсутствии постоянной составляющей, что уменьшает межсимвольные искажения, повышает взаимозащищенность, обеспечивает возможность совместной параллельной работы с аналоговыми системами передачи. Это позволяет увеличить длину участка регенерации и повысить верность передачи;
ü возможность контроля над коэффициентом ошибок без перерыва связи.
Технология хDSL предусматривает использование двух технологий линейного кодирования – 2B1Q и CAP. Обе они основаны на цифровой обработке передаваемого и принимаемого сигналов так называемым сигнальным процессором и обладает рядом общих принципов. Так, для снижения частоты линейного сигнала, а следовательно, повышения дальности работы, в технологии хDSL применена адаптивная эхокомпенсация. Суть ее в том, что прием и передача ведутся в одном спектральном диапазоне, разделение сигналов осуществляется микропроцессор.Приемникмодема хDSL как бы вычитает из линейного сигнала сигнал собственного передатчика и его эхо (сигнал, отраженный от дальнего конца кабеля или от места сочленения составного кабеля).
Рассмотрим более подробно каждый из методов кодирования:
1. Код 2В1Q относится к многоуровневым кодам. Многоуровневые коды по сравнению с двухуровневыми позволяют получить более высокие скорости передачи сигналов в линии. Одним из таких кодов является код 2B1Q. В нем определены четыре уровня напряжения. Каждое из четырех значений преобразуется в один из четырех уровней. Алгоритм формирования кода приведен на рисунке. В этих кодах исходная информация делится на подгруппы, а затем преобразуется по определённому правилу ( алфавиту ) этих групп, в результате чего получаются группы символов кода с другим основанием счисления и новым числом тактовых интервалов. «2» означает число символов кодируемой двоичной группе. (В)Binary-показывает, что для предоставления исходной последовательности используется двоичное счисление. «1» это число символов в группе кода, а последняя буква(Q-Quaternary) означает основание счисления четверичная
Рисунок 2.4 – Диаграммы кода 2В1Q.
Достоинства кода: высокая скорость передачи информации по абонентской линии; простота реализации, а значит, экономичность.
Недостатки кода: мощность передатчика должна быть выше, чем у кода AMI (ЧПИ), чтобы четыре уровня четко различались приемником на фоне помех; необходимость дополнительных мер для борьбы с длинными последовательностями одинаковых пар бит во избежание появления в спектре сигнала постоянной составляющей.
Код 2B1Q целесообразно использовать на абонентских линиях, организованных на качественных кабелях, что снижает влияние различных мешающих факторов. Кроме того, код можно использовать на небольших длинах абонентских линий.
Для передачи потока 2 Мбит/c наибольшая дальность работы достигается при использовании трех пар медного кабеля (около 4 км по жиле 0,4 мм); наименьшая — при работе по одной паре (менее 2 км).
2. CAP- Carrier Amplitude Phase Modulation- амлитудно-фазовая модуляция без передачи несущей. При этом виде модуляции несущая частота модулируется по амплитуде и фазе, создавая пространство с различным количеством кодовых состояний. НП: CAP-64 соответствует 64-ёх позиционной модуляционной диаграмме, что соответствует 64-ём состояниям отличающимся по амплитуде и фазе при этом в каждый момент времени передаётся 6 бит исходной информации (в16раз больше, чем в 2B1Q), а CAP-128 имеет 128-ми позиционную диаграмму и при этом передаётся 7бит информации в 1 такт.
Рисунок 2.4 – Диаграммы кода CAP.
Итогом повышения информативности линейного сигнала уменьшается линейная скорость, снижается частота сигнала и ширина спектра, т.е. увеличивается дальность и уменьшается подверженность различным видам помех и искажений.
Рисунок 2.4 – Спектральные диаграммы различных кодов.
3. В некоторых технологиях SDSL применён тип линейного кодирования, который называется TC-PAM-импульсная амплитудно-фазовая модуляция с кодированием Треллис. Суть данного метода кодирования в увеличении числа уровней (кодовых состояний) с 4 ёх (как в 2B1Q) до16 и применения специального кодирования, обеспечивающего опережающую коррекцию ошибок.
Вопрос: Нормирование ЭМС на сетях xDSL.
Электромагнитная совместимость (ЭМС) технических средств (ТС) определяется как способность технического средства функционировать с заданным качеством в заданной электромагнитной обстановке и не создавать недопустимых электромагнитных помех другим техническим средствам.
Условия ЭМС определяют уровень взаимных помех в цепях различного назначения в одном кабеле при котором обеспечивается нормированная достоверность и качество информации передаваемой дискретными и аналоговыми сигналами.
Рисунок 2.5 – Критерии ЭМС.
Переходное затухание между цепями XDSL в кабельных линиях местной связи определяется в зависимости от типа применяемом в оборудовании кода, рабочее затухание тракта на частотах максимальных спектральной плотности сигналов, количество цепей уплотненных данным видом аппаратуры.
Рассмотрим нормированные параметры влияния между цепями XDSL на линиях абонентского доступа:
Параметры | Код | Значение числа цепей. | |||
А0 дБ | HDB-3 F=1024 | 66.7 | 69.7 | 71.4 | 72.7 |
А3 дБ | 24.7 | 27.7 | 29.4 | 30.7 | |
А0 дБ | CAP F=160 | 66.7 | |||
А3 дБ | 36.7 | ||||
А0 дБ | 2B1Q F=40,80,160 | 67.7 | 70.7 | 72.7 | 73.7 |
А3 дБ | 25.7 | 28.7 | 30.4 | 31.7 |
При разработке норм должны учитываться критерии ЭМС цепей дискретной информации по верности передачи сообщений. В ансамбле цепей дискретной и аналоговой информации должны быть исключены взаимные влияния между цепями с кодами HDB3,2B1Q,CAP и т.д.
Основными показателями качества ЦСП является BER (bit error rat ) – коэффицинт ошибок.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Что такое xDSL и как это работает
хDSL — семейство технологий, позволяющих значительно повысить пропускную способность абонентской линии телефонной сети общего пользования путём использования эффективных линейных кодов и адаптивных методов коррекции искажений линии на основе современных достижений микроэлектроники и методов цифровой обработки сигнала.
Любая технология, прежде всего, предусматривает конкретную физическую модель транспортной среды. Одной из перспективных технологий, позволяющей передавать цифровую информацию по медным проводам (под “медными проводами” обычно понимается телефонная сеть общего пользования – ТФоП или POTS – Plain Old Telephone Service в англ. аббревиатуре) являются технологии DSL (Digital Subscriber Line – цифровая абонентская линия).
При использовании технологии DSL (часто используется аббревиатура хDSL, где под буквой “x” понимают одну из возможных подтехнологий, т.е. вариант основной технологии) не требуется строить новую транспортную сеть, т.к. используется уже существующая сеть POTS. Именно в этом и заключается основное экономическое преимущество технологии DSL.
Историю возникновения DSL следует отнести к началу 80-х годов, когда корпорация Bellcore разработала технологию DSL с высокой скоростью передачи данных (high — data — rate DSL — HDSL). Канал HDSL был разработан, чтобы расширить возможности технологии Т1 путем замены кодирования с чередованием полярности элементов на основе представления двух битов в одном четвертичном коде (2 binary 1 quaternary – 2B1Q).
Развитие служб сети Internet, для которых требуется высокая пропускная способность (например, видео), породило спрос на соединения с большей пропускной способностью. Наблюдения показывают, что в основном трафик, получаемый из сети Internet, предназначен для конечного пользователя (нисходящий поток данных), и только небольшой процент составляет трафик, который в действительности поставляется самим пользователем (восходящий поток данных). Вследствие этого был разработан канал АDSL (A – Asymmetric – ассиметричная цифровая пользовательская линия), используемый в традиционных телефонных сетях общего пользования (PSTN – Public Switched Telephone Network).
В технологии АDSL используется метод, позволяющий одновременно использовать ту же самую телефонную линию и для передачи голосовых сигналов, и для передачи данных, не повышая при этом требований к коммутационному оборудованию телефонной сети PSTN. Чтобы зарезервировать канал POTS с частотами до 4 кГц (в телефонии установлена полоса голоса в 4 кГц), дополнительно используется мультиплексирование с частотным уплотнением каналов (FDM – Frequency — Division Multiplexing). При этом цифровые потоки (data) передаются на частотах свыше 4 кГц (обычно, начиная с 25 кГц).
Из-за постоянного снижения ограничений на расстояние в технологии DSL и роста доступной пропускной способности, интерес к средствам DSL в последние годы возрос. Прежде чем говорить о DSL, приведем основные разновидности технологии DSL.
В табл.1 приведено сравнение некоторых разновидностей технологий DSL и показаны их наиболее важные характеристики, поддающиеся сравнению.
Методы кодирования в технологии DSL
В технологии DSL наибольшее распространение получили три основных метода кодирования, кратко рассмотренные ниже.
Техно- логия | Макс. скорость восхо-дящего потока данных (Мбит/с) | Макс. скорость нисхо-дящего потока данных (Мбит/с) | Стандарт диаметра проводов | Максимальное расстояние (метры) | Кодиро-вание | Стандарты |
ADSL | 0,8 | 8 | несколько | 5200 | САР или DMT | ANSI T1.413 и ITU G.992.1 |
EtherLoop | 6 | 6 | несколько | 6400 | QPSK, 16QAM, 64QAM | Запатентованная технология компании Elastic Networks |
G.Lite | 0,512 | 1,5 | несколько | 6700 | DMT | ITU G.992.2 |
G.SHDSL | 2,304 | 2,304 | несколько | 6100 | TC PAM | ITU G.992.1 |
HDSL | 1,544 Т1 2 Е1 | 1,544 Т1 2,0 Е1 | 26 AWG*) 24 AWG*) | 2750 3650 | 2B1Q | ITU G.992.1 |
HDSL2 | 1,544 Т1 2 Е1 | 1,544 Т1 2,0 Е1 | 26 AWG*) 24 AWG*) | 2750 3650 | ТС РАМ | ITU G.992.1 |
IDSL | 0,144 | 0,144 | несколько | 5800 | 2B1Q | ANSI T1.601 и TR-393 |
RADSL | 1,088 | 7,168 | несколько | 5500 | САР или DMT | ANSI T1.413 и ITU G.992.1 |
SDSL | 0,768 | 0,768 | несколько | 3050 | 2B1Q | ITU G.992.1 |
VDSL | 20 | 52 | несколько | 910 | CAP/DMT/ DWMT/SLC | TBD |
*) 26 AWG и 24 AWG – 0,4 мм и 0,5 мм соответственно
Амплитуда | Фаза | Битовая комбинация |
1 | 0 | 0 |
2 | 0 | 1 |
1 | 90 | 10 |
2 | 90 | 11 |
1 | 180 | 100 |
2 | 180 | 101 |
1 | 270 | 110 |
2 | 270 | 111 |
В табл.2 показаны возможные значения для кодирования 8 QAM (8 возможных битовых комбинаций). Чем больше различных фазовых смещений и уровней амплитуды используется, тем больше битов информации можно включить в каждую точку или символ. Проблемы возникают тогда, когда точки созвездия размещены настолько близко, что из-за шумов на линии или в приемном оборудовании невозможно отличить одну точку от другой.
2) Кодирование САР – это адаптивная форма кода QAM. Этот метод позволяет корректировать значения символов, учитывая состояние линии (например, шумов) в начале соединения. При кодировании с помощью данного метода из полученной на выходе волны удаляется несущая частота. В методе САР частотное уплотнение (FDM) обеспечивает поддержку трех подканалов – телефонного канала (POTS), канала передачи нисходящего потока данных (downstream) и канала передачи восходящего потока данных (upstream).
Голосовые сигналы занимают стандартную полосу частот 0…4 кГц (см. рис.2). В методе САР осуществляется адаптация скорости передачи, исходя из состояния канала, путем модификации номера битов или цикла (т.е. размер созвездия + скорость передачи битов несущих в бодах). На это указывают различные пары несущих частот (например, 17 кГц и 136 кГц).
На рис.2 показан частотный спектр САР-модуляции. Поддерживается доступ в двух частотных диапазонах: 25-160 кГц для upstream и 240-1100 кГц (вплоть до 1,5 МГц) – для downstream.
3) Кодирование DMT (Discreate Multi — Tone modulation 0 дискретная многочастот- ная (многотоновая) модуляция) – метод передачи сигналов, в котором полная полоса пропускания делится между 255 поднесущими или подканалами с шириной полосы пропускания в 4 кГц каждая. Первый канал поднесущей используется для передачи традиционного голосового сигнала и сети POTS. Данные upstream обычно передаются по каналам 7-32 (26-128 кГц), а данные downstream – по каналам 33-250 (138-1100 кГц). В действительности, метод DMT является разновидностью уплотнения FDM. Поток входящих данных делится на N каналов, имеющих одинаковую пропускную способность, но разную среднюю частоту несущей. Использование нескольких каналов с узкой полосой пропускания дает следующие преимущества:
Основными характеристиками метода DMT являются:
На рис.3 показан частотный спектр для модуляции DMT.
Типовое включение абонентского оборудования для одновременного просмотра TV программ и доступа к Internet показано на рис.4.
Разделительный фильтр (частота разделения обычно располагается в диапазоне 6…8 МГц) иногда необоснованно называют сплиттером. По-существу, это частотный диплексер, в составе которого параллельно включены ФНЧ (фильтр нижних частот) и ФВЧ (фильтр верхних частот). В частности, такую схему проводки осуществляет компания “Стрим-ТВ”.
На рис.5,6 проиллюстрированы общие возможные схемы физической прокладки проводки в помещении клиента. На рис.5 в абонентском оборудовании (СРЕ – Customer Premises Equipment) имеются интегрированные разветвители сети POTS, а на рис.6 показана линия, которая разветвляется на устройстве NID (Network Interface Device — устройство сетевого интерфейса, обычно являющееся точкой входа в здание абонента. В этой точке локальная линия связи переходит в проводку здания). В последнем случае сигнал (см. рис.6), подаваемый на обычный телефон, проходит через ФНЧ,
а элементы данных, подаваемых на ответвления, проходят через ФВЧ. Такой подход гарантирует, что в обоих случаях будут получены необходимые сигналы. Обе топологии используются в зависимости от того, где должна ветвиться линия и где физически будут размещаться провода.
Помехоустойчивость канала DSL увеличивается при сокращении расстояния (понижается уровень шума) и увеличении диаметра провода (снижаются потери). Разумеется, что увеличение уровня мощности в линии связи также увеличит S/N, но может привести к интерференции с сигналами других служб в этом же кабеле.
Исправление ошибок в прямом направлении (FEC – Forward Error Correction) осуществляется математически на принимающем конце канала передачи без запроса на повторную передачу ошибочных данных, что позволяет эффективно использовать пропускную способность для данных пользователя. Тем не менее отметим, что даже в ситуации, когда при передаче ошибки не возникает, использование метода FEC приводит к некоторому снижению пропускной способности, т.к. при этом добавляются ненужные служебные сигналы. Отношение числа исправленных ошибок к числу неисправленных показывает эффективность алгоритма исправления ошибок или относительную интенсивность ошибок. С применением метода FEC связано использование двух основных технологий: добавление байтов FEC и перемежение.
Байты FEC также называются контрольными байтами или избыточными байтами. Байты FEC добавляются к потоку данных пользователя, предоставляя тем самым возможность установить наличие ошибочных данных. Во многих системах можно выбрать следующее число байтов FEC : 0 (отсутствуют), 2, 4, 8, 12 или 16. Очевидно, что чем больше байтов FEC, тем больше эффективность исправления ошибок. Тем не менее, следует учитывать, что чем больше количество байтов FEC, тем большая часть полосы пропускания канала связи будет занята только служебными сигналами, что очень не эффективно для малозашумленных каналов. Можно добавить, что 16 байтов на фрейм (204 – 16 = 188 байт полезной информации) на скорости передачи 256 кбит/с занимают в процентном отношении большую часть полосы пропускания, чем тоже количество байтов FEC на скорости передачи 8 Мбит/с.
В большинстве систем служебные сигналы FEC выделяются и вычитаются из общего потока перед тем, как сообщать о скорости передачи в канале DSL. Таким образом, наблюдаемая скорость передачи в канале DSL – это, в действительности, доступная пользователю пропускная способность.
Перемежение – это процесс перестановки пользовательских данных в определенной последовательности, используемый с целью минимизации появления последовательных ошибок в алгоритме FEC Рида-Соломона (Reed — Solomon — RS) на принимающем конце канала. Эффективность использования алгоритма RS при возникновении единичных или разнесенных во времени ошибок (не идущих последовательно) оказывается выше.
Если в линии передачи на медном проводе возникает шумовой выброс, он может воздействовать на несколько последовательно расположенных битов данных, что приведет к появлению последовательно расположенных ошибочных битов. Поскольку в передатчике данные перемежаются, то при устранении перемежения данных в приемнике не только восстанавливается исходная последовательность битов, но и происходит разнесение ошибочных битов во времени (ошибочные биты появляются в различных байтах). Следовательно, ошибочные биты уже не идут последовательно, и процесс FEC с алгоритмом RS работает более эффективно.
Уровни мощности сигнала в каналах DSL значительно выше тех, которые применяются при передаче голосовых данных. Это объясняется тем обстоятельством, что погонное затухание телефонной линии очень быстро увеличивается с ростом частоты. Так, например, чтобы нормально принять сигнал на конце линии длиной 5…6 км, потребуется мощность порядка 15…20 dBm (дБмВт) – количество децибел (dB или дБ), отсчитываемых от мощности, равной одному милливатту, рассчитываемой на сопротивлении в 600 Ом.
Уровни мощности широкополосных сигналов обычно измеряют в dBm/Гц (дБмВт/Гц). Эту величину называют спектральной плотностью мощности (PSD – Power Spectral Density):
Формула (1) справедлива для полосы канала в 1 МГц, т.е. применима только к каналу ADSL.
Не вдаваясь в технические особенности констатируем, что на работоспособность DSL каналов играют следующие факторы:
Потери кабеля увеличиваются с ростом частоты, прежде всего, из-за емкостной проводимости, распределенной вдоль линии передачи (YС = jωС).
Заметим также, что сопротивление медного провода значительно изменяется при колебаниях температуры окружающей среды, особенно при прокладке кабелей по телеграфным столбам, когда они находятся на солнце. Следовательно, при некоторых топологических условиях характеристики DSL канала связи могут сильно изменяться в зависимости от времени суток. С ростом температуры сопротивление провода растет. Растут и потери. А с ростом сопротивления (и связанных с ним потерь) значение S/N уменьшается в силу уменьшения уровня сигнала.
Заключение
Технологию DSL можно считать полноправной технологией, которую можно использовать на участках “последней мили” для широкополосных сетей. В различных сценариях могут использоваться отдельные разновидности технологии DSL, что зависит преимущественно от требований к расстоянию и пропускной способности. Существует множество факторов, влияющих на качество соединения, и для того, чтобы улучшить скорость передачи данных по каналу DSL и запас отношения S/N, необходимо настраивать множество параметров. Решение кроется в понимании технологии и того, какие факторы какую роль играют в соединении.
Топологии сетей DSL у различных провайдеров услуг могут сильно отличаться, поэтому не стоит думать, что если абонентское оборудование (СРЕ) для сети DSL работает на одной несущей, то оно будет работать и на другой. У разных топологий есть свои преимущества и свои недостатки, но все топологии все же широко используются.
Технология доступа xDSL
Сведения о технологиях xDSL
Поэтому была предпринята разработка достаточно недорогой высокоскоростной цифровой технологии передачи данных по простому телефонному кабелю, DSL ( Digital Subscriber Line — цифровая абонентская линия ).
Ключевые преимущества технологий xDSL :
Эти преимущества определили технологии xDSL в качестве самого эффективного средства широкополосного доступа к сетевым услугам.
В таблице 13.1 приведены некоторые из распространенных технологий xDSL и их основные характеристики.
384 Кбит/с или 384 Кбит/с
Услуги локальных (LAN) и глобальных сетей (WAN)
IDSL ( цифровая абонентская линия ISDN ) — недорогая и испытанная технология, использующая чипы цифровой абонентской линии основного доступа BRI ISDN и обеспечивающая абонентский доступ со скоростью до 128 Кбит/с.
HDSL (High Speed Digital Subscriber Line ) — высокоскоростная цифровая абонентская линия ): вариант хDSL с более высокой скоростью передачи, который позволяет организовать передачу со скоростью более 1,5 Мбит/с ( стандарт США Т1) или более 2 Мбит/с (европейский стандарт Е1) в обоих направлениях обычно по двум медным парам.
VDSL ( Very High Speed Digital Subscriber Line — сверхвысокоскоростная цифровая абонентская линия ) — технология хDSL, обеспечивающая скорость передачи данных к пользователю до 52 Мбит/с.
- какая сейчас версия ворлд оф танк
- Нива карбюратор заводится и глохнет в чем причина