какая рнк входит в состав рибосом

Рибосомная РНК

Содержание

Рибосомные субчастицы и номенклатура рРНК

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

На электронно-микроскопических изображениях интактных рибосом заметно, что они состоят из двух отличающихся размерами субчастиц. Связь между этими субчастицами относительно слаба: при изменении параметров среды, ведущему к электростатическому дезэкранированию фосфатных групп рРНК (например, при снижении концентрации ионов магния) рибосома диссоциирует на субчастицы, такая диссоциация обратима: при восстановлении параметров среды субчастицы реассоциируют в исходные рибосомы.

Отношение масс субчастиц составляет

2:1; массы, в свою очередь выражаются в измеряемых напрямую константах седиментации (скорость осаждения в единицах Сведберга, S) при ультрацентрифуговании, именно этот параметр и лёг в основу номенклатуры рРНК и, рибосом и рибосомных субчастиц: используются обозначения вида

Так, например, рибосомная РНК прокариот с коэффициентом седиментации 16 единиц Сведберга обозначается как 16S рРНК.

Поскольку коэффициенты седиментации зависят не только от молекулярной массы, но и от формы частиц, седиментационные коэффициенты при диссоциации неаддитивны: так, например, бактериальные рибосомы с молекулярной массой

3*10 6 Дальтон имеет коэффициент седиментации 70S, обозначается как 70S и диссоциирует на субъединицы 50S и 30S:

70S какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом50S + 30S

Рибосомные субчастицы содержат по одной молекуле рРНК большой длины, масса которой составляет

3000 нуклеотидов) и субчастица 30S содержит рРНК 16S (длина

1500 нуклеотидов); большая рибосомная субчастица кроме «длинной» рРНК содержит также одну или две «коротких» рРНК (5S рРНК бактериальных рибосомных субчастиц 50S или 5S и 5.8S рРНК болших рибосомных субчастиц эукариот).

Синтез

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Рибосомная РНК составляет большую долю (до 80%) всей клеточной РНК, такое количество рРНК требует интенсивной транскрипции кодирующих её генов. Такая интенсивность обеспечивается большим количеством копий кодирующих рРНК генов: у эукариот насчитывается от нескольких сотен (

У человека гены, кодирующие рРНК, также организованы в группы тандемных повторов, расположеннных в центральных областях короткого плеча 13, 14, 15, 21 и 22-й хромосом.

Синтезируются РНК-полимеразой I в виде длинной молекулы пред-рибосомальной РНК, которая разрезается на отдельные РНК, составляющие основу рибосом. У бактерий и архей начальный транскрипт обычно включает 16S, 23S и 5S рРНК, между которыми находятся удаляемые в процессе обработки пре-рРНК последовательности. Обычно между 16S и 23S рРНК генами расположен один или несколько генов тРНК; так, у E. coli начальный транскрипт такой группы генов имеет следующую последовательность:

Такой транскрипт расщепляется на фрагменты пред-рРНК и тРНК ферментом рибонуклеазой III.

У эукариот 18S, 5.8S и 25/28 рРНК ко-транскрибируются РНК-полимеразой I, в то время как ген 5S рРНК транскибируется РНК-полимеразой III.

У эукариот места сосредоточения генов, кодирующих рРНК, обычно хорошо заметны в ядре клетки, благодаря скоплению вокруг них субъединиц рибосом, самосборка которых происходит тут же. Эти скопления хорошо прокрашиваются цитологическими красителями и известны под названием ядрышко. Соответственно, наличие ядрышек характерно не для всех фаз клеточного цикла: при делении клетки в профазе ядрышко диссоциирует, поскольку синтез рРНК приостанавливается и вновь образуется в конце телофазы при возобновлении синтеза рРНК.

Сравнительный анализ про- и эукариотических рРНК

Рибосомальные РНК (как и рибосомы) прокариот и эукариот отличаются друг от друга, хотя и обнаруживают значительное сходство участков последовательностей. 70S рибосома прокариот состоит из большой 50S субъединицы (построенной на основе двух молекул рРНК — 5S и 23S) и малой 30S субъединицы (построенной на основе 16S рРНК). 80S рибосома эукариот состоит из большой 60S субъединицы (построенной на основе трех молекул рРНК — 5S, 5,8S и 28S) и малой 40S субъединицы (построенной на основе 18S рРНК).

Использование информации о последовательности

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Информация о рРНК определённого организма используется в медицине и эволюционной биологии.

Источник

Какая рнк входит в состав рибосом

ГяРНК свойственна исключительно эукариотам, её нет у прокариот («доядерные» организмы, например бактерии и вирусы). Некоторые вирусы для хранения и передачи генетической информации следующим поколениям используют РНК вместо ДНК.

ГяРНК и её производное — информационная (или матричная) РНК переносят генетическую информацию от ядерной ДНК к цитоплазме.

Количество видов гяРНК равно количеству генов, так как она служит прямой копией кодирующих последовательностей генома. В процессе транскрипции РНК с ДНК ключевую роль играет фермент РНК-полимераза II. Информационная РНК образуется в результате процессинга гяРНК, при котором происходят вырезание некодирующих участков (интронов) и склеивание кодирующих экзонов. Таким образом, в состав иРНК входят кодирующая информация соответствующих видов гяРНК, а также фланкирующий лидерный и трейлерный участки, по этой причине она значительно короче.

Транспортная РНК

Каждая молекула тРНК состоит примерно из 75 связанных между собой нуклеотидов, образующих длинную цепь. В результате взаимодействия входящих в её состав оснований тРНК имеет конформационную структуру «клеверный лист», который затем скручивается в L-форму. Очень часто в состав тРНК помимо Ц, Г, А и У входит ряд редких оснований, некоторые из которых модифицированы путём метилирования. Важная особенность тРНК: «заряженная» молекула несёт на своём 3′-конце аминокислоту, а посередине конформационной структуры «клеверный лист» находятся три специфических основания, именуемые антикодоном. Последовательность оснований в антикодоне напрямую зависит от вида аминокислоты, прикреплённой к 3′-концу.

Так, например, тРНК, антикодон которой имеет последовательность 5′-ЦЦА-3′, может нести только аминокислоту триптофан. Следует отметить, что данная зависимость лежит в основе передачи генетической информации, носителем которой выступает тРНК.

Транскрипция молекул тРНК происходит с кодирующих её последовательностей в ДНК при участии фермента РНК-полимеразы III. Различают более 40 семейств тРНК, которые, в свою очередь, подразделяют на несколько видов.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Рибосомальная РНК

Существует несколько субъединиц рРНК, которые различаются по коэффициенту седиментации (осаждения), измеряемому в единицах Сведберга (S). Данный коэффициент зависит от скорости осаждения субъединиц при центрифугировании в насыщенной водной среде.

Каждая рибосома состоит из большой и малой субъединиц. Они содержат большое количество белков, синтезированных посредством трансляции иРНК, а также РНК, которая не подвергается трансляции. Термин «рибосомальная РНК» относят именно к нетранслируемому материалу. В малой субъединице находится 18S рРНК, а в большой — 4S, 5,8S и 28S рРНК.

Траскрипция рРНК с ДНК происходит при помощи двух дополнительных РНК-полимераз. РНК-полимераза I транскрибирует 5S, 5,8S и 28S в виде одного длинного 45S-тpaнскрипта, который затем разделяется на необходимые части. Таким образом обеспечивается равное количество молекул. В организме человека в каждом гаплоидном геноме присутствует примерно 250 копий последовательности ДНК, кодирующей 45S-транскрипт. Они расположены в пяти кластерных тандемных повторах в коротких плечах хромосом 13, 14, 15, 21 и 22.
Данные участки известны как ядрышковые организаторы, так как их транскрипция и последующий процессинг 45S-транскрипта происходят внутри ядрышка.

Не менее чем в трёх кластерах хромосомы 1 существует 2000 копий 5S-pPHK гена. Их транскрипция протекает в присутствии РНК-полимеразы III снаружи ядрышка. Затем они доставляются к местам сборки рибосом при помощи рибосомальных белков.
В рРНК насчитывают около 95 псевдоуридиновых участков, образованных посредством изомеризации уридина малой ядрышковой РНК.

Малая ядрышковая РНК. Малая (низкомолекулярная) ядрышковая РНК в основном участвует в направлении или проведении модификаций оснований в рРНК и малой ядерной РНК, таких, как, например, метилирование и псевдоуридинизация. Большинство малых ядрышковых РНК находятся в интронах других генов.

Сигналраспознающая РНК. Сигналраспознающая РНК распознаёт сигнальную последовательность белков, предназначенных для экспрессии, и участвует в их переносе через цитоплазматическую мембрану.

Микро-РНК. Существует примерно 200 микро-РНК человека длиной в 22 основания, производных расщепления рибонуклеазой Н их предшественников (двухцепочечных «зашпиленных» РНК) в соответствии с инвертированными повторами. Они контролируют трансляцию структурных генов путём комплементарного связывания с З’-концами нетранслируемых участков иРНК.

Митохондриальная РНК

Митохондриальная ДНК представляет собой непрерывную петлю и кодирует 13 полипептидов, 22 тРНК и 2 рРНК (16S и 23S). Большинство генов находятся на одной (тяжёлой) цепи, однако некоторое их количество расположено и на комплементарной ей лёгкой. При этом обе цепи транскрибируются в виде непрерывных транскриптов при помощи митохондриоспецифической РНК-полимеразы. Данный фермент кодируется ядерным геном. Длинные молекулы РНК затем расщепляются на 37 отдельных видов, а мРНК, рРНК и тРНК совместно транслируют 13 мРНК. Большое количество дополнительных белков, которые поступают в митохондрию из цитоплазмы, транслируются с ядерных генов.

У пациентов с системной красной волчанкой обнаруживают антитела к снурп-белкам собственного организма. Кроме того, считают, что определённый набор генов малой ядерной РНК хромосомы 15q играет важную роль в патогенезе синдрома Прадера—Вилли (наследственное сочетание олигофрении, низкого роста, ожирения, гипотонии мышц).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник

Рибосомы

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

Источник

СОДЕРЖАНИЕ

Состав

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Рибосомная РНК состоит из двух рибосомных субъединиц: большой рибосомальной субъединицы ( LSU ) и малой рибосомной субъединицы ( SSU ). Между этими субъединицами типы рРНК, используемые для формирования субъединицы, различаются.

1500 нуклеотидов), тогда как LSU содержит одну единственную малую рРНК и одну большую молекулу рРНК (

3000 нуклеотидов). Они объединяются с

50 рибосомными белками с образованием рибосомных субъединиц. В прокариотических рибосомах обнаружены три типа рРНК: 23S и 5S рРНК в LSU и 16S рРНК в SSU.

1800 нуклеотидов), тогда как LSU содержит две маленькие рРНК и одну молекулу большой рРНК (

SSU эукариот содержит субъединицу 18S рРНК, которая также содержит ES. ES SSU обычно меньше, чем ES LSU.

Структура рРНК может резко измениться, чтобы повлиять на связывание тРНК с рибосомой во время трансляции других мРНК. В 16s рРНК это происходит, когда определенные нуклеотиды в рРНК, по-видимому, чередуют спаривание оснований между одним нуклеотидом или другим, образуя «переключатель», который изменяет конформацию рРНК. Этот процесс способен влиять на структуру LSU и SSU, предполагая, что этот конформационный переключатель в структуре рРНК влияет на всю рибосому в ее способности сопоставлять кодон с его антикодоном при выборе тРНК, а также декодировать мРНК.

сборка

Функция

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Универсально консервативные вторичные структурные элементы рРНК у разных видов показывают, что эти последовательности являются одними из старейших обнаруженных. Они играют важную роль в формировании каталитических сайтов трансляции мРНК. Во время трансляции мРНК функция рРНК связывает как мРНК, так и тРНК, облегчая процесс трансляции кодоновой последовательности мРНК в аминокислоты. рРНК инициирует катализ синтеза белка, когда тРНК зажата между SSU и LSU. В SSU мРНК взаимодействует с антикодонами тРНК. В LSU акцепторный стержень аминокислоты тРНК взаимодействует с рРНК LSU. Рибосома катализирует сложноэфирно-амидный обмен, переводя С-конец растущего пептида с тРНК на амин аминокислоты. Эти процессы могут происходить благодаря участкам внутри рибосомы, в которых эти молекулы могут связываться, образованным петлями-стеблями рРНК. Рибосома имеет три таких сайта связывания, которые называются сайтами A, P и E:

Субъединицы и ассоциированная рибосомная РНК

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

ТипРазмерБольшая субъединица ( LSU рРНК )Малая субъединица ( SSU рРНК )
прокариотический70-е годы50S ( 5S : 120 н., 23S : 2906 н.)30S ( 16S : 1542 нт)
эукариотический80-е годы60S ( 5S : 121 н., 5,8S : 156 н., 28S : 5070 н.)40S ( 18S : 1869 нт)

S-единицы субъединиц (или рРНК) нельзя просто добавить, потому что они представляют собой меры скорости оседания, а не массы. На скорость оседания каждой субъединицы влияет ее форма, а также ее масса. Могут быть добавлены единицы нуклеотидов, поскольку они представляют собой целое число единиц в линейных полимерах рРНК (например, общая длина человеческой рРНК = 7216 нуклеотидов).

Кластеры генов, кодирующие рРНК, обычно называют « рибосомной ДНК » или рДНК (обратите внимание, что этот термин, по-видимому, подразумевает, что рибосомы содержат ДНК, что не так).

У прокариот

У эукариот

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Биосинтез

У эукариот

Рибосомная РНК не кодирует и никогда не транслируется в какие-либо белки : рРНК транскрибируется только с рДНК, а затем созревает для использования в качестве структурного строительного блока рибосом. Транскрибируемая рРНК связана с рибосомными белками с образованием субъединиц рибосом и действует как физическая структура, которая проталкивает мРНК и тРНК через рибосому для их обработки и трансляции.

Эукариотическая регуляция

Синтез рРНК активируется и подавляется для поддержания гомеостаза посредством множества процессов и взаимодействий:

У прокариот

Прокариотическая регуляция

Деградация

Рибосомная РНК довольно стабильна по сравнению с другими распространенными типами РНК и сохраняется в течение более длительных периодов времени в здоровой клеточной среде. После сборки в функциональные единицы рибосомная РНК внутри рибосом стабильна в стационарной фазе жизненного цикла клетки в течение многих часов. Деградация может быть вызвана «остановкой» рибосомы, состоянием, которое возникает, когда рибосома распознает дефектную мРНК или сталкивается с другими трудностями обработки, которые вызывают прекращение трансляции рибосомой. Как только рибосома останавливается, на рибосоме запускается специальный путь, нацеленный на весь комплекс для разборки.

У эукариот

У прокариот

Сохранение и стабильность последовательности

Значение

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Источник

Какая рнк входит в состав рибосом

Строение и уровни организации РНК

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Структура рибонуклеиновой кислоты

Первичная структура РНК

Таким образом, широко известные отличия состава РНК от ДНК имеют огромное биологическое значение: ведь свою функцию молекулы РНК способны выполнять только в одноцепочечном состоянии, что наиболее очевидно для мРНК: трудно представить, как бы могла двухцепочечная молекула транслироваться на рибосомах.

Вместе с тем, оставаясь одиночной, в некоторых участках цепь РНК может образовывать петли, выступы или “шпильки”, с двухцепочечной структурой (рис.1.). Эта структура стабилизирована взаимодействием оснований в парах А::У и Г. Ц. Однако могут образовываться и “не правильные” пары (например, Г •••• У), а в некоторых местах “шпильки” и вообще не происходит никакого взаимодействия. В составе таких петель может содержаться (особенно в тРНК и рРНК) до 50 % всех нуклеотидов. Общее же содержание нуклеотидов в РНК варьирует от 75 единиц до многих тысяч. Но даже самые крупные РНК на несколько порядков короче хромосомных ДНК.

Первичная структура мРНК скопирована с участка ДНК, содержащего информацию о первичной структуре полипептидной цепи. Первичная структура остальных типов РНК (тРНК, рРНК, редкие РНК) является окончательной копией генетической программы соответствующих генов ДНК.

Вторичная и третичная структуры РНК

Рибонуклеиновые кислоты (РНК) — однонитевые молекулы, поэтому в отличие от ДНК их вторичная и третичная структуры нерегулярны. Эти структуры, определяемые как пространственная конформация полинуклеотидной цепи, формируются в основном за счет водородных связей и гидрофобных взаимодействий между азотистыми основаниями. Если для молекулы нативной ДНК характерна устойчивая спираль, то структура РНК более многообразна и лабильна. Рентгеноструктурный анализ показал, что отдельные участки полинуклеотидной цепи РНК, перегибаясь, навиваются сами на себя с образованием внутриспиральных структур. Стабилизация структур достигается за счет комплементарных спариваний азотистых оснований антипараллельных участков цепи; специфическими парами здесь являются А-U, G-С и, реже, G–U. Благодаря этому в молекуле РНК возникают как короткие, так и протяженные биспиральные участки, принадлежащие одной цепи; эти участки носят название шпилек. Модель вторичной структуры РНК со шпилькообразными элементами была создана в конце 50-х — начале 60-х гг. XX в. в лабораториях А. С. Спирина (Россия) и П. Доти (США).

Образование спиральных структур сопровождается гипохромным эффектом — уменьшением оптической плотности образцов РНК при 260 нм. Разрушение этих структур происходит при понижении ионной силы раствора РНК или при его нагревании до 60-70 °С; оно также называется плавлением и объясняется структурным переходом спираль — хаотический клубок, что сопровождается увеличением оптической плотности раствора нуклеиновой кислоты.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Информационная РНК образуется в результате процессинга (созревания) г-я-РНК, при котором происходят отсечение шпилек, вырезание некодирующих участков (интронов) и склеивание кодирующих экзонов.

Информационная РНК (и-РНК) представляет собой копию определенного участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Другое дело, что иногда пептидная цепь вскоре после образования на рибосоме разрезается на несколько более мелких цепей. Так бывает, например, при синтезе инсулина и целого ряда олигопептидных гормонов.

Кодирующая часть зрелой м-РНК эукариот лишена интронов — каких-либо вставочных некодирующих последовательностей. Иными словами, имеется непрерывная последовательность смысловых кодонов, которая должна читаться в направлении 5′ —>3′.

3′-нетранслируемый участок и поли(А)-фрагмент имеют отношение к регуляции продолжительности жизни м-РНК, поскольку разрушение м-РНК осуществляется 3′-экзонуклеазами. После окончания трансляции м-РНК от поли(А)-фрагмента отщепляются 10-15 нуклеотидов. Когда данный фрагмент исчерпывается, начинает разрушаться значащая часть мРНК (если отсутствует 3′-нетранслируемый участок).

Общее количество нуклеотидов в мРНК обычно варьирует в пределах нескольких тысяч. При этом на кодирующую часть иногда может приходиться лишь 60-70 % нуклеотидов.

В клетках молекулы мРНК практически всегда связаны с белками. Последние, вероятно, стабилизируют линейную структуру мРНК, т. е. предупреждают образование в кодирующей части “шпилек”. Кроме того, белки могут защищать м-РНК от преждевременного разрушения. Такие комплексы мРНК с белками иногда называют информосомами.

Транспортная РНК

Транспортная РНК в цитоплазме клетки переносит аминокислоты в активированной форме к рибосомам, где они соединяются в пептидные цепи в определенной последовательности, которую задает РНК-матрица (мРНК). В настоящее время известны данные о нуклеотидной последовательности более чем 1700 видов тРНК из прокариотических и эукариотических организмов. Все они имеют общие черты как в их первичной структуре, так и в способе складывания полинуклеотидной цепи во вторичную структуру за счет комплементарного взаимодействия входящих в их структуру нуклеотидов.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Транспортная РНК в своем составе содержит не больше 100 нуклеотидов, среди которых отмечается высокое содержание минорных, или модифицированных, нуклеотидов.

Аланиновая тРНК содержит 9 необычных оснований с одной или несколькими метильными группами, которые присоединяются к ним ферментативным путем уже после образования фосфодиэфирных связей между нуклеотидами. Эти основания неспособны к образованию обычных пар; возможно, они служат для того, чтобы препятствовать спариванию оснований в определенных частях молекулы и таким образом обнажать специфические химические группы, которые образуют вторичные связи с информационной РНК, рибосомой или, быть может, с ферментом, необходимым для присоединения определенной аминокислоты к соответствующей транспортной РНК.

Известная последовательность нуклеотидов в тРНК по существу означает, что известна также его последовательность в генах, на которых эта тРНК синтезируется. Эту последовательность можно вывести основываясь на правилах специфического спаривания оснований, установленных Уотсоном и Криком. В 1970 году была синтезирована полная двухцепочечная молекула ДНК с соответсвующей последовательностью из 77 нуклеотидов, и оказалось, что она может служить матрицей для построения аланиновой транспортной РНК. Это был первый искусственно синтезированный ген.

Вторым этапом вновь синтезированная предшественница тРНК проходит послетранскрипционное созревание или процессинг. В ходе процессинга удаляются неинформативные излишки в пре-РНК и образуются зрелые, функциональные молекулы РНК.

По завершении процессинга во вторичной структуре вновь образуются дополнительные водородные связи за счет которых тРНК переходит на третичный уровень организации и принимает вид так называемой L-формы. В таком виде тРНК уходит в гиалоплазму.

В основе структуры транспортной РНК лежит цепочка нуклеотидов. Однако в силу того, что любая цепочка нуклеотидов имеет положительно и отрицательно заряженные части, она не может находиться в клетке в развернутом состоянии. Эти заряженные части притягиваясь друг к другу легко образуют между собой водородные связи по принципу комплементарности. Водородные связи причудливо скручивают нить т-РНК и удерживают ее в таком положении. В результате этого вторичная структура т-РНК имеет вид “клеверного листа” (рис. ), содержащего в своей структуре 4 двухцепочечных участка. Высокое содержание минорных или модифицированных нуклеотидов, отмечаемых в цепи тРНК и неспособных к комплементарным взаимодействиям, формирует 5 одноцепочечных участков.

Третичная структура т-РНК уже не имеет формы клеверного листа. За счет образования водородных связей между нуклеотидами из разных частей “листа клевера” его лепестки заворачиваются на тело молекулы и удерживаются в таком положении дополнительно ван-дер-ваальсовыми связями, напоминая собой форму буквы Г или L. Наличие стабильной третичной структуры является еще одной особенностью т-РНК, в отличие от длинных линейных полинуклеотидов м-РНК. Понять, как именно изгибаются различные части вторичной структуры т-РНК при образовании третичной структуры можно по рис., сопоставив цвета схемы вторичной и третичной структуры т-РНК.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

В процессе синтеза белка т-РНК антикодоном распознает трехбуквенную последовательность генетического кода (кодона) и-РНК, сопоставляя ей единственную соответствующую аминокислоту, закрепленную на другом конце тРНК. Только в случае комплементарности антикодона к участку мРНК транспортная РНК может к ней присоединиться и отдать переносимую аминокислоту на формирование протеиновой цепочки. Взаимодействие т-РНК и и-РНК происходит в рибосоме, которая также является активным участником трансляции.

АРСазы обладают способностью выборочно использовать при узнавании ассортимент тРНК для каждой аминокислоты, т.е. ведущим звеном узнавания является аминокислота, а к ней подгоняется своя тРНК. Далее тРНК путем простой диффузии переносит присоединенную к ней аминокислоту к рибосомам, где происходит сборка белка из аминокислот, поступающих в виде разных аминоацил-тРНК.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Связывание аминокислоты с тРНК

Аминоацилирование происходит в процессе замены присоединенной к аминокислоте молекулы АМФ на молекулу тРНК. После этой замены АМФ покидает синтетазу, а тРНК задерживается для последней проверки аминокислоты.

Проверка соответствия тРНК присоединенной аминокислоте

Модель синтетазы для проверки соответствия тРНК присоединенной аминокислоте предполагает наличие двух активных центров: синтетического и коррекционного. В синтетическом центре происходит присоединение тРНК к аминокислоте. Акцепторный участок тРНК, захваченной синтетазой, вначале контактирует с синтетическим центром, в котором уже размещена аминокислота, соединенная с АМФ. Этот контакт акцепторного участка тРНК придает ему неестественный изгиб до момента присоединения аминокислоты. После того, как происходит присоединение аминокислоты с акцепторному участку тРНК, необходимость нахождения данного участка в синтетическом центре отпадает, тРНК распрямляется и перемещает присоединенную к ней аминокислоту в коррекционный центр. При несовпадении размеров молекулы аминокислоты, присоединенной к тРНК, и размеров коррекционного центра, аминокислота опознается как неправильная и отсоединяется от тРНК. Синтетаза готова к следующему циклу. При совпадении размеров молекулы аминокислоты, присоединенной к тРНК, и размеров коррекционного центра, заряженная аминокислотой тРНК освобождается: она готова сыграть свою роль в трансляции протеина. А синтетаза готова присоединить новые аминокислоту и тРНК, и начать повторный цикл.

Соединение несоответствующей аминокислоты с синтетазой в среднем происходит в 1-м случае из 50 тыс., а с ошибочной тРНК всего лишь один раз на 100 тысяч присоединений.

Взаимодействие тРНК с кодоном мРНК по принципу комплементраности и антипараллельности означает: поскольку смысл кодона мРНК читается в направлении 5’—>3′, то антикодон в тРНК должен читаться в направлении 3’—>5′. При этом первые два основания кодона и антикодона спариваются строго комплементарно, т. е. образуются только пары А У и Г Ц. Спаривание же третьих оснований может отступать от этого принципа. Допустимые пары определяются схемой:

Третий нуклеотид антикодона тРНК:ЦАУГИ
Взаимодействующие с ним нуклеотиды кодонов мРНКГУAГУЦУЦА

Отсюда, в свою очередь, следует, что для узнавания 61 смыслового кодона требуется, в принципе, не такое же, а меньшее количество разных тРНК.

Рибосомальная РНК

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Рибосомальные РНК являются основой для формирования субъединиц рибосом. Рибосомы обеспечивают пространственное взаиморасположение мРНК и тРНК в процессе синтеза белка.

Каждая рибосома состоит из большой и малой субъединиц. Субъединицы включают в себя большое количество белков и рибосомальные РНК, которые не подвергаются трансляции. Рибосомы, как и рибосомальные РНК, различаются по коэффициенту седиментации (осаждения), измеряемому в единицах Сведберга (S). Данный коэффициент зависит от скорости осаждения субъединиц при центрифугировании в насыщенной водной среде.

Субъединицы образуют “скелет” рибосомы, каждый из которых окружен своими белками. Коэффициент седиментации полной рибосомы не совпадает с суммой коэффициентов двух ее субъединиц, что связано с пространственной конфигурацией молекулы.

В рРНК среди азотистых оснований выше чем обычно содержание гуанина и цитозина. Встречаются также минорные нуклеозиды, но не столь часто, как в тРНК: примерно 1 %. Это, в основном, нуклеозиды, метилированные по рибозе. Во вторичной структуре рРНК много двухцепочечных участков и петель (рис.). Таково строение молекул РНК, образуемых в двух последовательно проходящих процессах — транскрипции ДНК и созревании (процессинге) РНК.

Транскрипция рРНК с ДНК и процессинг рРНК

Пре-рРНК образуется в ядрышке, где находятся транскриптоны рРНК. Траснкрипция рРНК с ДНК происходит при помощи двух дополнительных РНК-полимераз. РНК-полимераза I транскрибирует 5S, 5,8S и 28S в виде одного длинного 45S-тpaнскрипта, который затем разделяется на необходимые части. Таким образом обеспечивается равное количество молекул. В организме человека в каждом гаплоидном геноме присутствует примерно 250 копий последовательности ДНК, кодирующей 45S-транскрипт. Они расположены в пяти кластерных тандемных повторах (т. е. попарно друг за другом) в коротких плечах хромосом 13, 14, 15, 21 и 22. Данные участки известны как ядрышковые организаторы, так как их транскрипция и последующий процессинг 45S-транскрипта происходят внутри ядрышка.

Не менее чем в трёх кластерах хромосомы 1 существует 2000 копий 5S-pPHK гена. Их транскрипция протекает в присутствии РНК-полимеразы III снаружи ядрышка.

В ходе процессинга остается чуть больше половины пре-рРНК и освобождаются зрелые рРНК. Часть нуклеотидов рРНК подвергается модификации, которая состоит в метилировании оснований. Реакция осуществляется метилтрансферазами. В роли донора метальных групп выступает S-аденозилметионин. Зрелые рРНК соединяются в ядре с белками рибосом, поступающих сюда из цитоплазмы, и образуют малую и большую субчастицы рибосом. Зрелые рРНК транспортируются из ядра в цитоплазму в комплексе с белком, который дополнительно защищает их от разрушения и способствует переносу.

Иногда говорят также о Е-центре (от “exit” — выход), куда перемещается тРНК, потерявшая связь с пептидилом, перед тем, как покинуть рибосому. Однако можно рассматривать этот центр как составную часть П-центра.

Распределение центров между субъединицами

Инициация рибосомы (подготовка рибосомы к синтезу белка)

Синтез белка, или собственно трансляцию, принято разделять на три фазы: инициации (начало), элонгации (удлинение полипептидной цепи) и терминации (окончание). В фазу инициации происходит подготовка рибосомы к работе: соединение ее субъединиц. У бактериальных и эукариотических рибосом соединение субъединиц и начало трансляции протекает по-разному.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Малая субъединица соединяясь с мРНК представляет для считывания два кодона. На первом из них протеин IF-2 закрепляет инициаторную аа-тРНК. Второй кодон закрывает протеин IF-1, который блокирует его и не позволяет присоединиться следующей тРНК до момента полной сборки рибосомы.

Таким образом, формируется своеобразный “бутерброд” из четырех основных компонентов. При этом в П-центре собранной рибосомы оказываются инициирующий кодон мРНК (АУГ) и связанная с ним инициирующая аа-тРНК. Последняя при образовании первой пептидной связи играет роль пептидил-тРНК.

какая рнк входит в состав рибосом. Смотреть фото какая рнк входит в состав рибосом. Смотреть картинку какая рнк входит в состав рибосом. Картинка про какая рнк входит в состав рибосом. Фото какая рнк входит в состав рибосом

Превращение гяРНК в иРНК путём удаления интронов проходит в ядерном комплексе РНК-белков, называемом сплайсомой. У каждой сплайсомы есть ядро, состоящее из трёх малых (низкомолекулярных) ядерных рибонуклеопротеинов, или снурпов. Каждый снурп содержит хотя бы одну малую ядерную РНК и несколько белков. Существует несколько сотен различных малых ядерных РНК, транскрибируемых в основном РНК-полимеразой II. Считают, что их основная функция — распознавание специфических рибонуклеиновых последовательностей посредством спаривания оснований по типу РНК—РНК. Для процессинга гяРНК наиболее важны Ul, U2, U4/U6 и U5.

Митохондриальная РНК

Митохондриальная ДНК представляет собой непрерывную петлю и кодирует 13 полипептидов, 22 тРНК и 2 рРНК (16S и 23S). Большинство генов находятся на одной (тяжёлой) цепи, однако некоторое их количество расположено и на комплементарной ей лёгкой. При этом обе цепи транскрибируются в виде непрерывных транскриптов при помощи митохондриоспецифической РНК-полимеразы. Данный фермент кодируется ядерным геном. Длинные молекулы РНК затем расщепляются на 37 отдельных видов, а мРНК, рРНК и тРНК совместно транслируют 13 мРНК. Большое количество дополнительных белков, которые поступают в митохондрию из цитоплазмы, транслируются с ядерных генов. У пациентов с системной красной волчанкой обнаруживают антитела к снурп-белкам собственного организма. Кроме того, считают, что определённый набор генов малой ядерной РНК хромосомы 15q играет важную роль в патогенезе синдрома Прадера—Вилли (наследственное сочетание олигофрении, низкого роста, ожирения, гипотонии мышц).

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *