какая связь существует между электричеством и магнетизмом
Электричество и магнетизм
Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, ученый обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку.
Это свойство тока используется во множестве электрических приборов. Если магнитную стрелку поднести к проводу с переменным током, то она останется неподвижной. Однако это не значит, что вокруг проводника с переменным током нет магнитного поля. Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка не будет отклоняться только вследствие своей инерционности, она не будет успевать следовать за изменениями магнитного поля. Первый электромагнит, основные черты которого сохранились во многих современных электрических приборах, например в электромагнитных реле, излучателях головных телефонов, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу.
В 1821 году Фарадей получил вращение проводника с током в магнитном поле, то есть создал прообраз электромотора. В 1834 г. русский академик Б. С. Якоби создал один из первых в мире практический электродвигатель.
Тема 1.3. Электромагнетизм.
Ханс Кристиан Эрстед
Первооткрывателем электромагнетизма считается датский физик Ханс Кристиан Э́рстед, обнаруживший воздействие электрического тока на магнит.
До начала XIX века никто не предполагал, что электричество и магнетизм что-то связывает. И даже разделы физики, в которых они рассматривались, были разными. Доказательство существования такой связи было получено Эрстедом в 1820 г. во время проведения опыта на лекции в университете. На экспериментальном столе рядом с проводником тока находился магнитный компас. В момент замыкания электрической цепи магнитная стрелка компаса отклонилась от своего первоначального положения. Повторив опыт, Эрстед получил такой же результат.
Силовые линии проводника с током
Как и магнитное поле, образованное постоянным магнитом, магнитное поле проводника с током характеризуется силовыми линиями.
Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.
Но если придать проводнику другую форму, картина будет иная.
Магнитное поле катушки с током:
Магнитное поле соленоида
Изогнув спиралью проводник с током, мы получим соленоид (от греческого «трубка»). Силовые линии создаваемого им магнитного поля представляют собой замкнутые линии. Наиболее часто они расположены внутри витков.
Простейший электромагнит
Магнитное поле электромагнита можно регулировать, увеличивая или уменьшая силу тока или количество витков в обмотке. Каждый виток создаёт своё магнитное поле. И чем больше витков в электромагните, тем сильнее его поле. Соответственно, если уменьшить количество витков, то магнитное поле ослабляется.
Первый электромагнит создал английский инженер Уильям Стёрджен в 1825 г. Его устройство представляло собой стержень изогнутой формы, сделанный из мягкого железа и покрытый лаком для изоляции от провода. На стержень был намотан толстый провод из меди.
Рисунок электромагнита Стёрджена
В современных электромагнитах сердечники изготавливают из ферромагнетиков – веществ, которые обладают высокой намагниченностью при температуре ниже точки Кюри даже в отсутствии внешнего магнитного поля. Для обмотки применяют изолированный алюминиевый или медный провод.
Параллельные проводники в магнитном поле.
Проводники с током в магнитном поле
Нужно заметить, что Ампер исследовал проводник в магнитном поле, созданном не постоянным магнитом, а другим проводником с током.
Объединив электричество и магнетизм, Ампер назвал новую область физики электродинамикой.
Магнитное поле. Индукция.
Если к средней части магнита прикрепить нить и позволить ему свободно вращаться, подвесив его к штативу, то он развернётся таким образом, что один из его полюсов будет ориентирован строго на север, а другой строго на юг. Конец магнита, обращённый на север, называют северным полюсом (N), а противоположный – южным (S).
Магнит притягивает другие магниты, не соприкасаясь с ними. Одноимённые полюсы разных магнитов отталкиваются, а разноимённые притягиваются. Не правда ли, это напоминает взаимодействие электрических зарядов?
Физики XIX века пытались представить магнитное поле как аналог электростатического. Они рассматривали полюсы магнита как положительный и отрицательный магнитные заряды (северный и южный полюсы соответственно). Но вскоре поняли, что изолированных магнитных зарядов не существует.
Заряды в электрическом диполе можно легко отделить друг от друга, разрезав на две части проводник, в разных частях которого они находятся. Но с магнитом так не получится. Разделив таким же способом постоянный магнит, мы получим два новых магнита, каждый из которых тоже будет иметь два магнитных полюса.
И сколько бы не делили их дальше, всё равно будут получаться магнитные диполи.
Наиболее сильно притягиваются к магнитам ферромагнетики . Причём их собственное магнитное поле, создаваемое молекулами, атомами или ионами, в сотни раз превосходит вызвавшее его внешнее магнитное поле. Ферромагнетиками являются такие химические элементы, как железо, кобальт, никель, а также некоторые сплавы.
Парамагнетики – вещества, намагничивающиеся во внешнем поле в его направлении. Притягиваются к магнитам слабо. Химические элементы алюминий, натрий, магний, соли железа, кобальта, никеля и др. – примеры парамагнетиков.
Но есть материалы, которые не притягиваются, а отталкиваются от магнитов. Их называют диамагнетиками . Они намагничиваются против направления внешнего магнитного поля, но отталкиваются от магнитов довольно слабо. Это медь, серебро, цинк, золото, ртуть и др.
Если векторы магнитной индукции поля одинаковы по величине и направлению во всех точках поля, то такое поле называется однородным.
Графически магнитное поле изображают с помощью силовых линий.
Картину расположения этих линий можно получить с помощью простого опыта. Рассыпав на куске гладкого картона или стекла железные опилки и положив его на магнит, можно увидеть, как опилки располагаются по определённым линиям. Эти линии имеют форму силовых линий магнитного поля.
Правило буравчика (винта) и правило правой руки
Эти правила дают возможность просто и довольно точно определить направление линий магнитной индукции, не используя никаких физических приборов.
Если направление поступательного движения буравчика совпадает с направлением движения тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.
Если мысленно обхватить правой рукой проводник с током таким образом, чтобы отогнутый на 90° большой палец показывал направление тока, то остальные пальцы покажут направление линий магнитной индукции поля, создаваемого этим током, и направление вектора магнитной индукции, направленного по касательной к этим линиям.
Андре Мари Ампер
где I – сила тока в проводнике;
Направление силы Ампера удобно определять по правилу левой руки.
Располагаем левую руку таким образом, чтобы четыре пальца указывали направление тока, а линии поля входили в ладонь. Тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.
Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину
где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.
Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I :
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн).
Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, “натянутую” на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).
Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.
Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.
Электричество и магнетизм. Какая между ними связь?
Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, он обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку.
Ты можешь в этом убедиться, если сам проведешь аналогичный опыт. Для этого тебе потребуются: батарея и лампа для карманного электрического фонаря, медный провод в любой изоляции и компас.
Рис. 12. При изменении направления тока в проводнике меняется и направление силовых линий магнитного поля.
С помощью отрезков провода, удалив с их концов изоляцию, подключи к батарее лампу. Лампа горит, потому что образовалась электрическая цепь. Батарея является источником питания этой цепи. Поднеси один из соединительных проводников поближе к компасу (рис. 12), и ты увидишь, как его магнитная стрелка сразу же станет поперек проводника. Она укажет направление круговых магнитных силовых линий, рожденных током. Наиболее сильное магнитное поле тока будет возле самого проводника. По мере удаления от проводника магнитное доле, рассеиваясь, ослабевает.
А если изменить направление тока в проводнике, поменяв местами полюсы батареи? Изменится и направление магнитных силовых линий — магнитная стрелка повернется в другую сторону. Значит, направление силовых линий магнитного поля, создаваемого током, зависит от направления тока в проводнике.
Какова в этих опытах роль лампы? Она служит как бы индикатором— прибором, свидетельствующим о наличии тока в цепи. Она, кроме того, ограничивает ток в цепи. Если к батарее подключить только проводник, магнитное поле тока станет сильнее, но батарея быстро разрядится.
Если в проводнике течет постоянный ток неизменной величины, его магнитное поле также не будет изменяться. Но если ток уменьшится, то слабее станет и его магнитное поле. Увеличится ток — усилится его магнитное поле, исчезнет ток — пропадет его поле. Словом, ток и его магнитное поле неразрывно связаны и зависят друг от друга.
Магнитное поле тока легко усилить, если проводник с током свернуть в катушку. Силовые линии магнитного поля такой катушки можно сгустить, если внутрь нее поместить гвоздь или железный стержень. Такая катушка с сердечником станет электромагнитом, способным притягивать сравнительно тяжелые железные предметы (рис. 13). Это свойство тока используется во множестве электрических приборов.
А если компас поднести к проводу с переменным током? Стрелка останется неподвижной, даже если провод свернуть в катушку. Значит ли это, что вокруг проводника с переменным током отсутствует магнитное поле? Нет, конечно. Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка
компаса не будет отклоняться только вследствие своей «неповоротливости», она не будет успевать следовать за быстрыми изменениями магнитного поля.
Первый электромагнит, основные черты которого сохранились сейчас во многих электрических приборах, например в электромагнитных реле, телефонных приборах, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу: если ток в обоих проводниках течет в одном направлении, они притягиваются друг к другу, а если в противоположных, то отталкиваются друг от друга.
Догадываешься, почему так происходит? В первом случае, когда направление тока в обоих проводниках одинаково, их магнитные поля, также имеющие одинаковое направление, как бы стягиваются в единое поле, увлекая за собой проводники. Во втором случае магнитные поля вокруг проводников, имеющие теперь противоположные направления, отталкиваются друг от друга и тем самым раздвигают проводники.
В первой же половине прошлого, столетия ценнейший вклад в науку внес английский физик-самоучка Майкл Фарадей. Изучая связь между электрическим током и магнетизмом, он открыл явление электромагнитной индукции. Суть этого явления заключается в следующем. Если внутрь катушки из изолированной проволоки быстро ввести магнит, стрелка электроизмерительного прибора, подключенного к концам катушки, на мгновение отклонится от нулевой отметки на шкале прибора (рис. 14). При таком же быстром дижении магнита внутри катушки, но уже в обратном направлении, стрелка прибора так же быстро отклонится в противоположную сторону и вернется в исходное положение. Вывод мог быть один: магнитное поле пересекает провод и возбуждает (индуцирует) в нем энергию движения свободных электронов — электрический ток.
Впрочем, можно поступить иначе: перемещать не магнит, а катушку вдоль неподвижного магнита. Результат будет тот же. Магнит можно заменить катушкой, по которой пропущен ток. Магнитное пол? этой катушки при пересечении витков второй катушки также будет возбуждать в ней электродвижущую силу, создающую в ее цепи электрический ток.
Явление электромагнитной индукции лежит в основе действия генератора переменного тока, представляющего собой катушку из провода, вращающуюся между полюсами сильного магнита или электромагнита (на рис. 15 катушка показана в виде одного витка провода). Вращаясь, катушка пересекает силовые линии магнитного поля, и в ней индуцируется (вырабатывается) электрический ток.
Рис. 13. Проводник с током, свернутый в катушку, становится электромагнитом.
В 1837 г. русский академик Б. С. Якоби открыл явление, обратное по действию явлению электромагнитной индукции. Через катушку, помещенную в магнитном поле, ученый пропускал ток, и катушка начинала вращаться.
Рис. 15. Схема генератора переменного тока.
Это был первый в мире электромагнитный двигатель.
Фарадей, открывший закон электромагнитной индукции, опытным путем установил еще одно очень важное явление — возможность передавать ток из катушки в катушку на расстояние без какой-либо прямой электрической связи между ними. Дело в том, что переменный или прерывающийся ток, текущий в одной из катушек, преобразуется в переменное магнитное поле, которое возбуждает во второй катушке э. д. с. На этой основе создан замечательный прибор — трансформатор, играющий очень важную роль в электротехнике и радиотехнике.
Какая связь существует между электричеством и магнетизмом
На протяжении многих столетий ученые из разных уголков мира провели множество экспериментов, прежде чем они смогли выявить связь между магнетизмом и электричеством. Эта статья объясняет различные понятия, относящиеся к обоим этим сущностям.
Когда электрический заряд находится в движении, он производит электрический ток. Магнетизм можно описать как линию силы. Связь между магнетизмом и электричеством была учреждена физиком Хансом Кристианом Эрстедом в начале девятнадцатого века. Он отметил, что, у магнитного компаса, стрелка которого помещена рядом с проводом, который несет электрический ток, иглы начинают отгибаться. Это показывает, что электрический ток создает магнитное поле вокруг себя. Английский физик Майкл Фарадей продолжил исследование взаимосвязи между электричеством и магнетизмом. По его мнению, если магнитные поля изменяются через петлю провода, то электрический ток может производиться в самом проводе.
Связь между магнетизмом и электричеством на атомном уровне
Свойства электрического и магнитного полей
Воздействия электрического и магнитного поля на заряженную частицу
Связь между магнетизмом и электричеством представляет собой отдельное понятие и применяется к нескольким принципам реальной жизни. Электричество и магнетизм лежат в основе принципа работы различных полезных приспособлений, таких как взрывозащищенные электродвигатели.
Вы должны быть зарегистрированы чтобы оставлять комментарии
Электричество и магнетизм: какая между ними связь?
Непосредственную связь между электричеством и магнетизмом открыл в 1819 г. датский профессор физики Ганс Эрстед. Проводя опыты, ученый обнаружил, что всякий раз, когда он включал ток, магнитная стрелка, находящаяся поблизости от проводника с током, стремилась повернуться перпендикулярно проводнику, а когда выключал, магнитная стрелка возвращалась в исходное положение. Ученый сделал вывод: вокруг проводника с током возникает магнитное поле, которое воздействует на магнитную стрелку.
Ты можешь в этом убедиться, если сам проведешь аналогичный опыт. Для этого потребуются: батарея гальванических элементов, например 3336Л, миниатюрная лампа накаливания, предназначаемая для карманного электрического фонаря, медный провод толщиной 0,2 0,3 мм в эмалевой, хлопчато бумаж ной или шелковой изоляции и компас. С помощью отрезков провода, удалив с их концов изоляцию, подключи к батарее лампу накаливания. Лампа горит, потому что образовалась электрическая цепь. Батарея в данном случае является источником питания этой цепи. Поднеси один из соединительных проводников поближе к компасу (рис. 10) и ты увидишь, как его магнитная стрелка сразу же станет поперек проводника. Она укажет направление круговых магнитных силовых линий, рожденных током. Наиболее сильное магнитное поле тока будет возле самого проводника. По мере удаления от проводника магнитное поле, рассеиваясь, ослабевает.
А если изменить направление тока в проводнике, поменяв местами подключение его к полюсам батареи? Изменится и направление магнитных силовых линий магнитная стрелка повернется в другую сторону. Значит, направление силовых линий магнитного поля, возбуждаемого током, зависит от направления тока в проводнике.
Какова в этих опытах роль лампы накаливания? Она служит как бы индикатором наличия тока в цепи. Она, кроме того, ограничивает ток в цепи. Если к батарее подключить только проводник, магнитное поле тока станет сильнее, но батарея быстро разрядится.
Если в проводнике течет постоянный ток неизменного значения, его магнитное поле также не будет изменяться. Но если ток уменьшится, то слабее станет и его магнитное поле. Увеличится ток усилится его магнитное поле, исчезнет ток магнитное поле пропадет. Словом, ток и его магнитное поле неразрывно связаны и взаимно зависимы.
Магнитное поле тока легко усилить, если проводник с током свернуть в катушку. Силовые линии магнитного поля такой катушки можно сгустить, если внутрь ее поместить гвоздь или железный стержень. Такая катушка с сердечником станет электромагнитом, способным притягивать сравнительно тяжелые железные предметы (рис. 11). Это свойство тока используется во множестве электрических приборов.
А если магнитную стрелку поднести к проводу с переменным током? Она станет неподвижной, даже если провод свернуть в катушку. Значит ли это, что вокруг проводника с переменным током нет магнитного поля? Магнитное поле есть, но оно тоже переменное. Магнитная же стрелка не будет отклоняться только вследствие своей неповоротливости инерционности, она не будет успевать следовать за быстрыми изменениями магнитного поля.
Первый электромагнит, основные черты которого сохранились во многих современных электрических приборах, например в электромагнитных реле, излучателях головных телефонов, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу: если ток в обоих проводниках течет в одном направлении, то они притягиваются, а если в противоположных, отталкиваются.
Догадываешься, почему так происходит? В первом случае, когда направление тока в обоих проводниках одинаково, их магнитные поля, также имеющие одинаковое направление, как бы стягиваются в единое поле, увлекая за собой проводники. Во втором случае магнитные поля вокруг проводников, имеющие теперь противоположные направления, отталкиваются и тем самым раздвигают проводники.
В первой половине прошлого столетия ценнейший вклад в науку внес английский физик самоучка Майкл Фара дей. Изучая связь между электрическим током и магнетизмом, он открыл явление электромагнитной индукции. Суть его заключается в следующем. Если внутрь катушки из изолированной проволоки быстро ввести магнит, стрелка электроизмерительного прибора, подключенного к концам катушки, на мгновение отклонится от нулевой отметки на шкале прибора (рис. 12,а)л При таком же быстром движении магнита внутри катушки, но уже в обратном направлении, стрелка прибора также быстро отклонится в противоположную сторону (рис. 12, б) и вернется в исходное положение. Вывод мог быть один: магнитное поле пересекает провод и возбуждает (индуцирует) в нем движение свободных электронов электрический ток. Впрочем, можно поступить иначе: перемещать не магнит, а катушку вдоль неподвижного магнита. Результат будет такой же. Магнит можно заменить катушкой, в которой течет постоянный ток. Магнитное поле этой катушки, вызванное током, при пересечении витков второй катушки также будет возбуждать в ней электродвижущую силу, создавая в ее цепи электрический ток.
Явление электромагнитной индукции лежит в основе действия генератора переменного тока, представляющего собой катушку из провода, вращающуюся между полюсами сильного магнита или электромагнита (на рис. 13 катушка показана в виде одного витка провода). Вращаясь, катушка пересекает силовые линии магнитного поля, и в ней индуцируется (вырабатывается) электрический ток.
В 1837 г. русский академик Б. С. Якоби открыл явление, обратное по действию генератора тока. Через катушку, помещенную в магнитном поле, ученый пропускал ток, и катушка начинала вращаться. Это был первый в мире электромагнитный двигатель.
Фарадей, открывший закон электромагнитной индукции, опытным путем обнаружил еще очень важное явление— возможность передавать переменный ток из катушки в катушку на расстояние без какой либо, прямой электрической связи между ними. Суть этого явления заключается в том, что переменный или прерывающийся (пульсирующий) ток, текущий в одной из катушек, преобразуется в переменное магнитное поле, которое пересекает витки второй катушки и тем самым возбуждает в ней переменную ЭДС. На этой основе создан замечательный прибор трансформатор, играющий очень важную роль в элек тротехнике и радиотехнике.








