какая видимость в стратосфере
«Прыгать будете почти из космоса». Как в СССР ныряли в пустоту с высоты 25 километров
Земля нас не держала. Слишком скучно, слишком много тайн над головой. Одиночки поднимались высоко, но всегда находились те, кто взбирался еще выше. Несмотря на экстремальные условия и угрозу жизни. Еще до первого полета Гагарина в космос были смельчаки, отрывавшиеся от Земли на десятки километров. Иногда они возвращались обратно лишь с сединой в волосах, а иногда им не везло и они с почестями укладывались под Кремлевскую стену. Рассказываем о героях, штурмовавших стратосферу.
Парашюты для космонавтов
— Требуется испытать новое высотное снаряжение в условиях стратосферы. Прыгать будете почти из космоса. Командование предлагает поручить эти испытания вам, — такими словами весной 1962 года полковник ВВС СССР Романюк встретил майора Евгения Андреева и полковника Петра Долгова. Этим двум парашютистам-испытателям предстояло стать участниками секретного эксперимента «Звезда» в рамках советской космической программы.
Курировал эксперимент лично Сергей Королев. Конструктор хотел отработать неожиданные сценарии чрезвычайных происшествий при спуске космических кораблей. Все-таки отечественные аппараты жизнеобеспечения космонавтов, особенно на этапе приземления, требовали серьезной доработки. Всего за полтора года до этого первый человек слетал в космос на корабле «Восток-1», и когда пришло время приземляться, по плану полета Гагарин катапультировался на высоте семи километров в своем герметичном скафандре. Ни о какой «мягкой посадке» аппарата и речи не было.
Королев же хотел по максимуму отработать все нештатные ситуации. И была вероятность того, что космонавтам придется досрочно катапультироваться на еще большей высоте — в стратосфере. Там плотность воздуха в десятки и сотни раз меньше, а потому куполу парашюта практически не на что опереться.
Как попасть в стратосферу?
Стратосферой принято считать слой атмосферы нашей планеты на высоте от 11 до 50 км над поверхностью. Нынешние пассажирские самолеты летают на высоте 9—12 км. Высоту выбирают в зависимости от сопротивления воздуха и эффективного расхода топлива. Чем выше мы поднимаемся, тем разреженнее становится воздух, а потому совсем уж высоко забраться не получится, ведь лайнер потеряет устойчивость на воздушных волнах. Только махины наподобие «Конкорда» или Lockheed SR-71 могли позволить себе подняться на высоту 18 или 29 км соответственно.
А потому неудивительно, что 100 лет назад добраться до стратосферы своим ходом человеку можно было либо полетом фантазии, либо подъемом на воздушном шаре. Естественно, специально сконструированном — с емким баллоном из тонкого и плотного пластика, который мог бы вместить тысячи кубометров водорода или гелия.
Разреженный воздух и экстремально низкие температуры требовали надежных и герметичных гондол для экипажа. В них нужно было организовать как системы регенерации воздуха, так и механизмы терморегуляции для поддержания комфортной температуры внутри. В общем, полеты в стратосферу всегда были рисковым занятием.
Риск — дело благородное
Эксперимент был назначен на 1 ноября 1962 года. Полковник Долгов был облачен в обычный космический скафандр тех лет с прозрачным гермошлемом, системами обогрева и жизнеобеспечения. И, самое главное, с экспериментальным парашютом, который он сам же дорабатывал и тестировал все полгода до прыжка. Этот парашют полковник должен был раскрыть сразу же после того, как покинет гондолу на высоте 25 км.
Его коллега майор Андреев надел высотный противоперегрузочный костюм. У него была другая задача — падать без раскрытия парашюта до высоты в 1000 метров.
У обоих офицеров за плечами было уже за тысячу прыжков на каждого. Притом часто прыжков опасных, с новыми экспериментальными парашютами, чьи купола гасли, стропы путались, а системы катапультирования не всегда срабатывали как следует. И Андреев, и Долгов знали цену риску, понимали, на что идут.
Испытателей перед стартом подвергли десатурации — продули легкие кислородом для того, чтобы вывести из организма азот. При поднятии на большую высоту и резком снижении атмосферного давления этот газ может вызвать высотную декомпрессионную болезнь. На высоте более 20 км при резкой разгерметизации капсулы возможно «закипание» жидкостей в организме — в крови, лимфе и межтканевой жидкости образовываются парогазовые пузырьки.
Андреева и Долгова ждал подъем на высоту 25,5 км, а затем резкое падение. А потому бездумно рисковать никто не собирался. История подъемов в стратосферу и так знавала много трагедий.
Стратостат «Осоавиахим-1» и трое погибших
На первом в мире стратостате швейцарец Огюст Пикар в мае 1931 года поднялся на высоту 15 785 метров для того, чтобы исследовать космические лучи. Не сказать, что во время этого полета все прошло гладко: в сферической герметичной гондоле из алюминия нашли щель, которую пришлось быстро заделывать паклей и вазелином, были разбиты аппарат со сжатым воздухом и ртутный барометр.
Буквально за полчаса пилоты поднялись на максимальную высоту, но на землю смогли вернуться только спустя 17 с половиной часов. Дело в том, что веревка для стравливания воздуха через клапан шара запуталась. Тем не менее Пикар и его помощник остались живы.
А вот экипажу советского стратостата «Осоавиахим-1» повезло меньше. Его полет несколько раз откладывали из-за плохих погодных условий. Но к январю 1934 года и очередному съезду компартии все наконец было готово. Конечно, риск зимнего полета был высок. Это отмечал и командир экипажа, опытный аэронавт Павел Федосеенко. Тем не менее на гондолу стратостата установили самое передовое оборудование, созданное в стенах Главной геофизической обсерватории, и 180 кг балласта. Предполагалось, что «Осоавиахим-1» с экипажем из трех человек поднимется на высоту 20,5 км.
И стратостату это удалось. «Говорит „Сириус“! Время сейчас 11:16. Высота по альтиметру 20 500 метров», — передали на землю члены экипажа. Это было одно из последних сообщений. Около полудня связь прервалась.
Разбитую гондолу и трех мертвых членов экипажа нашли спустя пять часов.
Согласно записям в бортжурнале и показаниям приборов экипаж поднялся на высоту 22 км, после чего начал плавное и медленное снижение. Но на высоте 12 км температура газа в шаре стратостата и температура наружного воздуха практически сравнялись, скорость снижения выросла до 15 м/с, а балласт экипаж сбросить не успел. Не успели пилоты и открыть люк, чтобы выпрыгнуть с парашютами из падающей гондолы, — он был завинчен 12 болтами. Когда на высоте полутора-двух километров гондола оторвалась от шара, экипажу оставалось лишь десяток секунд болтаться в хаотично вращающейся кабине, пока она не ударилась о землю.
Прах всех троих пилотов был захоронен в Кремлевской стене.
Умер практически мгновенно
К 7 часам утра 1 ноября 1962 года советские стратостаты уже не сваливались в бесконтрольное падение. В это время Андреев и Долгов заняли свои места в гондоле «Волга», которая имитировала спускаемый аппарат космического корабля «Восток-1».
«Когда мы впервые увидели стратостат, удивили его размеры, сложная аппаратура. Большая герметичная кабина имела два отсека — командирский и экспериментальный», — вспоминал Андреев в своей книге «Небо — вокруг меня».
Ко времени полета экипаж уже хорошо изучил стратостат, проведя несколько тестовых подъемов на небольшую высоту
В днище гондолы располагался шлюзовой колодец. Через него с помощью простейшей катапульты должен был выпасть Андреев. Как уже отмечалось, раскрыть парашют ему следовало лишь в километре над землей. По расчетам скорость падения должна была достичь 900 км/ч.
Спустя 78 секунд следом за напарником шагнуть в пустоту должен был Долгов. Ему предстояло сразу раскрыть парашют и коснуться ногами земли спустя 38 минут.
В 7 часов и 44 минуты последовала команда на старт. «Нет привычного грохота двигателей, стоит тишина, только ожили стрелки многочисленных приборов», — замечает Андреев.
Через иллюминаторы экипаж наблюдает, как небо из бледно-голубого превращается в сине-фиолетовое, а затем и вовсе чернеет. Тем временем датчики снимают данные о пульсе, артериальном давлении, частоте дыхания, работе сердца экипажа. Приборы показывают, что за бортом минус 61 градус по Цельсию.
Спустя 2 часа и 20 минут гондола поднимается на высоту 25 458 метров — прибыли, время начинать эксперимент. Стартует разгерметизация кабины, в костюм Андреева под избыточным давлением поступает кислород. Долгов через стеклянную гермоперегородку улыбается и желает напарнику счастливого пути.
«Резко сжимаю рычаги кресла и выстреливаюсь в пустоту», — рассказывает Андреев в книге. В падении он переворачивается на спину и видит, как в «беспредельной темноте черного неба светятся звезды». На высоте 12 км майор разворачивается лицом к Земле и видит Волгу с ее многочисленными притоками. Поверх костюма есть морской спасательный жилет, но Андреев решает направиться к громадному полю. Вытяжное кольцо дергать не приходится, парашют открывается автоматически. А дальше самое простое: приземлился, расстелил купол на земле и лег в его центре, ожидая поисковую команду.
«Напряженно вглядываясь в небо, увидел далеко в стороне два раскрытых купола, на которых снижался друг. Но Петра Ивановича уже не было в живых», — еще одна цитата из книги.
Еще 300 метров тело Долгова волочилось по земле за куполом высотного парашюта. В гермошлеме испытателя была маленькая дырочка размером около сантиметра. Как предположило расследование, после катапультирования Андреева гондола еще долго раскачивалась. В момент, когда полковник Долгов собирался прыгнуть за коллегой, он ударился шлемом о болт крепления люка. Его скафандр мгновенно разгерметизировался.
Посмертно полковнику присвоили звание Героя Советского Союза. В его честь назвали улицу в Москве. Это был первый и последний полет стратостата «Волга». Больше гигантские шары и гондолы в небо СССР не поднимались.
Стратосфера, свойства, строение и структура
Стратосфера, свойства, строение и структура.
Стратосфера – один из основных слоев атмосферы, который располагается между тропосферой и мезосферой на высоте от 10 – 50 км от уровня моря.
Стратосфера:
Сама стратосфера очень разрежена, влага (водяной пар) в ней практически отсутствует, а потому в ней не образуются облака, за исключением перламутровых. Перламутровые облака представляют собой конденсационные образования, которые образуются в нижнем слое стратосфере на высотах от 15 до 27 км в зимне-весенний период, преимущественно в полярных широтах (иногда – в средних широтах) при аномально низких температурах (менее –78 о С). Перламутровые облака являются достаточно редким явлением. Лучшее время для их наблюдений – сумерки, когда Солнце опускается на 1-6 градусов за горизонт.
Плотность воздуха в стратосфере в десятки и сотни раз меньше, чем на уровне моря. Давление на нижней границе стратосферы в 10 раз меньше, чем у поверхности Земли, а на верхней – меньше почти в 1000 раз.
По сравнению с тропосферой стратосфера представляет более однородную и более стабильную атмосферную среду, которая создает очень стабильные атмосферные условия. Поэтому в стратосфере отсутствует атмосферная турбулентность, которая так распространена в тропосфере. Здесь присутствуют устойчивые воздушные течения. Скорость ветра в стратосфере может значительно превышать скорость ветра в тропосфере, достигая 300 км/ч.
Строение, структура, слои стратосферы:
Стратосфера состоит из нескольких слоев: нижнего и верхнего.
Нижний слой стратосферы располагается на высоте 10 – 25 км над уровнем моря. Вблизи экватора нижний край стратосферы начинается с высоты около 18 км, в средних широтах – около 12 км и на полюсах – около 10 км. Для нижнего слоя стратосферы характерно незначительное изменение температуры с изменением высоты. Температура составляет порядка −56,5 °С.
Температура в пределах стратосферы также изменяются по мере смены сезонов года, достигая особенно низких температур в полярную ночь (зиму).
30 км. Общий объём О3, будь он сконцентрирован в одном отдельном слое, составил бы при нормальном давлении сплошной слой толщиной всего 1,7−4,0 мм.
Полеты в стратосфере:
Коммерческие авиалайнеры обычно летают на высотах 9-12 км, которые находятся в нижних слоях стратосферы в умеренных широтах. Это связано с экономией топлива при полете, в основном за счет низких температур, возникающих вблизи тропопаузы, и низкой плотности воздуха, уменьшающей лобовое сопротивление летательного аппарата.
Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на больших высотах – до 20 км ввиду более стабильных летных условий (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км. Рекорд высоты для беспилотного аэростата составляет 51,8 км.
Атмосфера Земли. Что такое тропосфера, стратосфера и тропопауза
Автор: Маглипогода · Опубликовано 05.06.2020 · Обновлено 27.06.2021

Атмосфера Земли — это газовая оболочка, окружающая планету, одна из геосфер. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя переходит в околоземную часть космического пространства.
В а тмосфера делится на следующие основные слои: тропосфера, стратосфера, мезосфера, термосфера, экзосфера.
Сегодня мы поговорим о тропосфере, стратосфере и что такое тропопауза.
Чтобы разобраться, что такое тропопауза, давайте взглянем шире на атмосферу в целом. Начинается она на поверхности Земли, которая, нагреваясь солнечным теплом, обильно насыщает им атмосферу, заодно наполняя ее аэрозолями и водяным паром, которые поглощают и накапливают тепло. Поэтому приземная атмосфера полна тепловой энергии. Нагретый воздух имеет низкую плотность и всплывает вверх, влекомый архимедовой силой. Разнообразие характера земной поверхности, разность широт, непрерывно меняющееся освещение днем и отсутствие его ночью приводят к неравномерному распределению тепла в атмосфере.
Эта неравномерность в сочетании с высокой плотностью тепловой энергии делает атмосферу динамичной до неистовости. Мощные конвективные вертикальные потоки перемешивают воздушную массу, муссоны и пассаты создают длительные сезонные широтные потоки, циклоны и ураганы закручивают и перемещают огромные воздушные массы в горизонтальном и вертикальном направлении. Суточные бризы и хаотические предгрозовые шквалы и торнадо добавляют локальные бурления в грандиозную общую циркуляцию. Поэтому вечно меняющуюся нижнюю атмосферу назвали тропосферой, от древнегреческого τρόπος — «поворот, изменение», подобно поворачивающей, меняющей направление тропе. Высота тропосферы тоже изменчива и лежит в пределах 8–20 км.
Поднимаясь этой изменчивой вертикальной тропой, воздух расширяется и потому охлаждается. Температура воздуха с ростом высоты снижается, достигая на высоте 10 км морозных 56 градусов ниже нуля. Архимедова сила всплывающих потоков исчезает еще раньше из-за охлаждения и расходования полученного внизу тепла. Но за счет полученного вертикального движения воздушные потоки поднимаются всё выше, расходуя остатки кинетической энергии, в которую перешла часть энергии тепловой.
Над этой динамичной картиной раскинулось другое царство атмосферы. Оно разительно отличается от нижнего, уходит вверх в три раза дальше, до 50 км. В нем почти не бывает облаков и погодных явлений, практически не возникает вертикальных течений. Вертикальное перемещение воздуха происходит там лишь диффузионно, очень постепенно, порождаемые потоки всегда горизонтальны и не приводят к перемешиванию нижних и верхних слоев воздуха. Это царство слоев названо стратосферой, от латинского stratum — «слой». Стабильная стратосфера отличается от изменчивой тропосферы и поведением температуры: первые 15 километров стратосферы имеют постоянную температуру около минус 56,5°C.
Лишь изредка, локально, только в высокоширотных областях (за широтой 65–70°) в стратосфере все-таки возникают облака. Тропосферные потоки, обтекая хребты гор высоких широт (например, самая высокая точка острова Шпицберген, лежащего на 79°с.ш., — гора Ньютон — имеет высоту 1713 м), забрасываются вверх как по трамплину; одновременно в этой зоне стратосферы температура локально опускается до минус 80°C. Возникает сложная цепочка явлений, приводящая к появлению самых редких и, возможно, самых красивых облаков Земли — перламутровых, уникальных облаков стратосферы.
Во второй трети стратосферы, с высоты около 25 км, температура, как ни странно, начинает расти. И растет до самого верха, до 50 км, достигая нуля градусов по Цельсию. Температура атмосферы растет из-за поглощения молекулами озона ультрафиолетового излучения Солнца в диапазоне длин волн 240–280 нанометров. В верхних слоях стратосферы этот диапазон еще не ослаблен поглощением и присутствует полностью. Поэтому и поглощение там идет наиболее полно, и температура верхних слоев стратосферы самая высокая. В средние слои стратосферы проходят лишь остатки излучения этого диапазона, не поглощенные верхами, поэтому температура средних слоев ниже верха.
Такое строение стратосферы — одинаковый холод в нижней трети и постепенный прогрев верхней с ростом высоты — приводит к стабильности ее «устройства» и состояния. Внизу воздух холодный, вверху нагретый; соответственно, нет причин для вертикальной тепловой конвекции. Стратосфера устойчива, как пирамида. И своими холодными слоями она давит на тропосферу, покоясь на ней.
Между двумя столь разными царствами, разделяя их, лежит пограничная полоса — тропопауза. Она отделяет вертикальное буйство тропосферы от слоистой стратосферы. Вертикальные движения воздуха здесь затухают, а тропосферное снижение температуры резко, в три раза, уменьшается с высотой, наверху тропопаузы исчезая совсем. Охладившиеся вверху тропосферы и потерявшие архимедову силу вертикальные потоки добираются сюда по инерции, почти теряя перед этой границей и свой запас движения. Они выдыхаются на тропосфере и в тепловом, и в кинетическом смысле. И останавливаются на ней, уже не имея здесь движущего начала для внедрения в холодную слоистую стратосферу.
На этом фото видно образование «наковальни» при спокойном состоянии тропосферы. В тропосфере штиль и много облаков, затеняющих землю. Приток солнечного тепла в нижнюю тропосферу слабый. В результате крупное облако получает небольшой запас энергии и очень медленное вертикальное движение. Об этом говорят толстые округлые края «наковальни», медленно закручивающиеся вниз, и волнообразная структура верха, показывающая отсутствие быстрого радиального течения из центра «наковальни». Это признаки невысокой вертикальной скорости в облаке, медленного вертикального дрейфа тумана.
Границы тропопаузы неодинаковы и меняются в зависимости от широты, времени года и других факторов. Толщина составляет от нескольких сот метров до трех километров. Высота тропопаузы над полюсами Земли самая низкая, 8–10 км, в средних широтах поднимается до 12–13 км и достигает 16–18 км в зоне экватора. Это понятно, ведь тропопаузу вздымают вверх вертикальные потоки неистовой тропосферы, а неистовость ее зависит от уровня получаемого тепла, минимального на полюсах и максимального на экваторе. В средних широтах и ближе к полюсам сильнее сказываются холодные сезоны, уменьшая поступление солнечного тепла в эти зоны Земли. В эти периоды тропопауза опускается там на 1–2 км, а в теплые сезоны снова поднимается. При этом температура тропопаузы тоже меняется: чем выше, тем больше степень расширения воздуха и тем сильнее он охлаждается. Поэтому высокая экваториальная тропопауза всегда холоднее более теплой (но всё равно изрядно морозной) полярной, причем намного — на несколько десятков градусов.
Тропопауза над экватором — самая высокая на Земле. Плоскость тропопаузы лежит значительно выше горизонта, а значит, выше самолета, который летит на высоте 12 км. Если бы вершина наковален находилась на одной высоте с самолетом, она лежала бы точно на линии горизонта. По удалению «наковален» (порядка 30 км) от самолета можно определить, что они возвышаются над ним на несколько километров, то есть находятся на высоте 16–18 км.
Привязанная к локальным крупным атмосферным образованиям, возлежащая на плечах местных тропосферных атлантов, тропопауза опускается над низким давлением циклонов и слабыми плечами холодных воздушных масс и приподнимается повышенным давлением антициклонов и теплыми воздушными массами. Иногда на границе тропосферы возникают струйные течения, в южных широтах достигающие огромной силы и скорости, больше 100 м/сек. Такие течения могут разрушить, размыть тропопаузу, создать ее разрыв, который постепенно затягивается с прекращением струйного течения.
Но могут возникать еще более интересные ситуации. Когда большая холодная воздушная масса, с низкой тропопаузой на плечах, вторгается далеко на юг, она может подтолкнуть свою тропопаузу под более высокую и холодную тропическую тропопаузу. Тогда в зоне вторжения сосуществуют две тропопаузы одновременно, одна над другой, разделенные несколькими километрами высоты. Двойная конструкция с теплой нижней тропопаузой неустойчива, и вскоре верхняя тропопауза распадается, а нижняя поднимается с прогревом вторгшейся холодной массы.
Тропопауза прозрачна, но благодаря облакам-наковальням мы можем наблюдать ее положение. Инерция вертикального движения восходящего потока в большом облаке подкачивает облачный туман вплотную к тропопаузе. Медленно, практически с нулевой скоростью, туман расползается горизонтально вдоль тропопаузы, делая эту границу видимой и формируя на ее нижней поверхности наковальню из раздвигающегося в стороны облачного материала. Поэтому расположенные рядом наковальни всегда находятся на одной высоте — высоте местной тропопаузы.
Насколько же абсолютна хрустальная грань тропопаузы? Существуют ли облака, способные пробить эту неприступную небесную твердь? Да, вопрос только в количестве энергии. Для пробивания тропопаузы нужна очень высокая концентрация тепловой энергии в облаке, существенно превышающая плотность энергии в обычных погодных облаках. И такие облака существуют. Энергия в них накачивается не атмосферными процессами — это облака от мощных вулканических извержений, у которых плотность тепла может быть на порядки выше, чем у погодных облаков. Она возникает из-за огромной температуры (многие сотни градусов) газов и пепловых масс. При очень мощных извержениях плотность энергии пеплового облака позволит ему не только преодолеть тропопаузу, но и подняться в стратосферу, иногда очень высоко, до средней и верхней стратосферы.
Извержение вулкана острова Райкоке в северной части Курильских островов. Фото сделано астронавтами НАСА с борта МКС 22 июня 2019 года. Это пример неглубокого внедрения вулканического облака в стратосферу. По данным радиозондов, высота тропопаузы здесь около 11 км, в то время как плоская вершина облака достигает 13 км. Плотность энергии в пепловой туче оказалась достаточной для преодоления тропопаузы, но была мала для подъема высоко в стратосферу. Поэтому, преодолев тропопаузу и попав в самые нижние слои стратосферы, облако растекается там плоской вершиной. Охлаждаясь и слегка оседая, пепловая масса уносится в виде шлейфа горизонтальным течением. Фото с сайта nasa.gov
Облако от взрыва термоядерного устройства, проведенного США 1 ноября 1952 года на атолле Эниветок в Тихом океане (испытание Айви Майк). Мощность составила 10–12 мегатонн тротилового эквивалента. Облако поднялось до высоты 37 километров, поднявшись в верхнюю стратосферу. На этом снимке верхняя часть облака уже находится в стратосфере. По бурной турбулентности, выходящей на поверхность облака, видно, что плотность энергии ещё очень велика и далека от равновесного состояния со слоями стратосферы; запас энергии в облаке обеспечит дальнейший его подъем высоко в стратосферу. Фото с сайта ru.wikipedia.org.
Тропосфера — это слой, где происходит погода. Ст ратосфера — дом озона. Тропопауза — слой атмосферы, в котором происходит резкое снижение вертикального температурного градиента, переходный слой между тропосферой и стратосферой.
Следите за погодой и климатом вместе с нами!





























