какая звезда превращается в белого карлика
Звезда — Белый карлик
Белые карлики — распространенный тип звезд с малой светимостью и огромной массой. В нашей галактике они составляют несколько процентов от общего числа звезд. Это компактные объекты, размером примерно с Землю. Температура внутри них невысока, так что ядерные реакции не протекают. Запасенная энергия постепенно уменьшается за счет излучения электромагнитных волн. Температура поверхности белых карликов колеблется в пределах от 5 000° K у старых, «холодных» звезд до 50 000° K у молодых и «горячих».
Белые карлики относятся к объектам, находящимся в последней стадии эволюции. Плотность вещества белых карликов больше плотности обычных звёзд в миллион раз, а распространённость их среди звёзд Млечного Пути – 3 – 10%. Также белые карлики от звезд отличаются тем,что в их недрах не идут термоядерные реакции.
У обычных звёзд рентгеновское излучение создаёт корона, а у белых карликов подобным источником служит фотосфера.
Когда на Солнце закончится весь гелий (через 100 – 110 млн. лет), оно превратится в белый карлик.
Их удалось получить при помощи рентгеновского телескопа «Чандра». В оптике Сириус А в 10 000 раз ярче своего напарника, Сириуса В, но в рентгеновском диапазоне белый карлик имеет большую яркость.
Из чего состоят
Белые карлики не так просты и скучны, как это может показаться на первый взгляд. Действительно, если ядерные реакции не идут и температура невысока, то откуда берется высокое давление, сдерживающее гравитационное сжатие вещества? Оказывается, что решающую роль играют квантовые свойства электронов. Под действием гравитации вещество сжимается настолько, что ядра атомов проникают внутрь электронных оболочек соседних атомов. Электроны уже не принадлежат конкретным ядрам, а вольны летать по всему пространству внутри звезды. Ядра же образуют плотно связанную систему наподобие кристаллической решетки. Далее происходит самое интересное. Хотя в результате излучения в окружающее пространство белый карлик остывает, средняя скорость электронов не уменьшается. Это связано с тем, что, согласно законам квантовой механики, два электрона, имея полуцелый спин, не могут находиться в одном состоянии (принцип Паули). Значит, число различных состояний электронов белого карлика не может быть меньше числа электронов. Но понятно, что число состояний уменьшается с уменьшением скоростей электронов. В предельном случае, если бы скорость всех электронов стала равной нулю, все они оказались бы в одном состоянии (точнее — в двух, с учетом проекции спина). Поскольку электронов в белом карлике много, то и состояний должно быть много, а это обеспечивается сохранением их скоростей. Ну а большие скорости частиц создают большое давление, противодействующее гравитационному сжатию. Конечно, если масса объекта слишком велика, гравитация преодолеет и этот барьер.
Эволюция
Большинство белых карликов являются одним из последних этапов эволюции нормальных, не очень массивных звезд. Звезда, исчерпав запасы ядерного горючего, переходит в стадию красного гиганта, теряет часть вещества, превращаясь в белый карлик. При этом наружная оболочка — нагретый газ — разлетается в космическом пространстве и с Земли она наблюдается как туманность. За сотни тысяч лет такие туманности рассеиваются в пространстве, а их плотные ядра, белые карлики, постепенно остывают аналогично раскалённому куску металла, но очень медленно, поскольку его поверхность мала. Со временем они должны превратиться в коричневые (черные) карлики — сгустки материи с температурой окружающей среды. Правда, как показывают расчеты, на это может потребоваться множество миллиардов лет.
Очевидно, что открытие коричневых карликов затруднено их слабой светимостью. Один из коричневых карликов находится в созвездии Гидры. Его блеск составляет лишь 22,3. Уникальность открытия заключается в том, что ранее обнаруженные коричневые карлики входили в двойные системы, именно поэтому их и могли обнаружить, а этот — одиночный. Его нашли только благодаря близости к Земле: до него всего 33 световых года.
Предполагается, что нынешние коричневые карлики — это не остывшие белые (слишком мало времени прошло), а «недоразвившиеся» звезды. Как известно, звезды рождаются из газопылевого облака, причем одно облако порождает несколько звезд разной массы. Если сжимающийся сгусток газа имеет массу в 10-100 раз меньше солнечной, образуются коричневые карлики. Они довольно сильно разогреваются силами гравитационного сжатия и излучают в инфракрасном диапазоне. Ядерные реакции в коричневых карликах не происходят.
Открытие
К началу 30-х гг. XX в. в общих чертах сложилась теория внутреннего строения звезд. Задавая массу звезды и ее химический состав, теоретики могли рассчитать все наблюдаемые характеристики звезды — ее светимость, радиус, температуру поверхности и т. д. Однако эту стройную картину нарушала невзрачная звездочка 40 Эридана В, открытая английским астрономом Вильямом Гершелем в 1783 г. Для своей высокой температуры она имела слишком небольшую светимость, а следовательно, слишком малые размеры. С точки зрения классической физики это не поддавалось объяснению. Спустя некоторое время были найдены и другие необычные звезды. Самым знаменитым из этих открытий стало открытие Сириуса В — невидимого спутника самой яркой звезды — Сириуса. Астроном Фридрих Вильгельм Бессель (немецкий математик и астроном), наблюдая за Сириусом, обнаружил, что он движется не по прямой, а «слегка по синусоиде». Примерно десять лет наблюдений и размышлений привели Бесселя к выводу, что рядом с Сириусом находится вторая звезда, оказывающая на него гравитационное воздействие.
Предсказание Бесселя подтвердились после того, как А. Кларк в 1862 г. сконструировал телескоп с объективом диаметром 46 см, на тот момент самый большой телескоп в мире. Для проверки качества линзы его направили на Сириус — самую яркую звезду. В поле зрения телескопа появилась еще одна звезда, неяркая, которую и предсказывал Бессель.
Температура Сириуса В оказалась равной 25 000 К — в 2,5 раза выше, чем у яркого Сириуса А. С учетом размеров звезды это указывало на чрезвычайно высокую плотность ее вещества — 106г/см³. Наперсток такого вещества весил бы на Земле миллион тонн.
Как оказалось, белые карлики — это звездные «огарки», ведущие свое происхождение от обычных звезд. Равновесие обычных звезд поддерживается силой давления раскаленной плазмы, которая противостоит силе гравитации (тяготения). Чтобы равновесие сохранялось, необходимы внутренние источники энергии, иначе звезда, теряя энергию на излучение потоков света в окружающее пространство, не выдержала бы противоборства с гравитационными силами. Таким внутренним источником служат термоядерные реакции превращения водорода в гелий. Как только в центральных областях звезды «выгорает» весь водород, равновесие нарушается и звезда начинает сжиматься под действием собственной тяжести. Типичная плотность окружающих нас предметов составляет несколько граммов на 1 см³ (примерно такова характерная плотность атома). Такую же среднюю плотность имеют звезды типа нашего Солнца. Однако, если обычную звезду сжать в 100 раз, атомы «вожмутся» друг в друга и звезда превратится в один гигантский атом, в котором энергетические уровни отдельных атомов «сцепятся» воедино. При таких плотностях электроны образуют так называемый вырожденный электронный газ — особое квантовое состояние, при котором все электроны белого карлика «чувствуют» друг друга и образуют единый коллектив — именно он и противостоит гравитационному сжатию. Так звезда превращается в плотное ядро — белый карлик.
Загадка дисков белых карликов: как образуются и живут «мертвые» звезды
Белые карлики, светящиеся ядра мертвых звезд, часто содержат диски пыльных обломков. Однако эти обломочные диски появляются только через 10-20 миллионов лет после бурной фазы Красного Гиганта. Теперь ученые выяснили особенности этого этапа жизни звезды.
Читайте «Хайтек» в
Происхождение белых карликов
В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего и предположения, что звезды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звезд. Эти предположения полностью подтвердились.
В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода — нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре.
Рост температуры и плотности в звездном ядре ведет к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.
Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей.
Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями.
Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет
«Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, наблюдаются такие объекты как протопланетарные туманности.
Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока неясны, но можно предположить следующие факторы, способные внести свой вклад в потерю оболочки:
Теоретики предсказывали, что молодые белые карлики на ранней стадии эволюции должны сжиматься. Согласно расчётам, из-за постепенного остывания радиус типичного белого карлика может сократиться на несколько сотен километров в первый миллион лет его существования.
В 2017 году российские астрофизики из Государственного астрономического института имени П. К. Штернберга МГУ, Института астрономии РАН, Института теоретической и экспериментальной физики имени А. И. Алиханова и Национального института астрофизики (Милан) под руководством профессора Сергея Борисовича Попова впервые в мире документально обнаружили молодой белый карлик, очень быстро уменьшающий радиус.
Российские ученые и их итальянские помощники изучали рентгеновское излучение двойной системы HD49798/RX J0648.0-4418, расположенной в созвездии Кормы на расстоянии в две тысячи световых лет от Земли. Результаты исследований опубликованы в журнале Monthly Notices of the Royal Astronomical Society в феврале 2018 года
Свойства белых карликов
Химический состав белого карлика определяется тем, на каком этапе закончились термоядерные реакции внутри звезды-прародительницы.
Если масса исходной звезды мала, 0,08—0,5 масс Солнца, что недостаточно для запуска горения гелия, то после израсходования всего запаса водорода такие звезды становятся гелиевыми белыми карликами с массой до 0,5 солнечных.
Если первоначальная звезда имеет массу в 0,5—8 масс Солнца, то этого достаточно для гелиевой вспышки, эволюция звезды продолжатся на фазе красного гиганта и прекратится только после выгорания гелия. Получившееся в результате вырожденное ядро такой звезды станет углеродно-кислородным белым карликом с массой в 0,5—1,2 солнечных.
Когда исходная звезда имеет массу 8—12 солнечных, этого достаточно для запуска горения углерода, эволюция звезды продолжится дальше и углерод в ее недрах может быть переработан в более тяжелые элементы, в частности неон и магний. И тогда ее конечной стадией эволюции такой звезды может стать образование кислородно-неоно-магниевого белого карлика с массой, близкой к пределу Чандрасекара.
Эволюция белых карликов
Белые карлики начинают свою эволюцию как обнажившиеся вырожденные ядра красных гигантов, сбросивших свою оболочку — то есть в качестве центральных звёзд молодых планетарных туманностей.
Температуры фотосфер ядер молодых планетарных туманностей чрезвычайно высоки — так, например, температура центральной звезды туманности NGC 7293 составляет от 90 000 К (оценка по линиям поглощения) до 130 000 К (оценка по рентгеновскому спектру). При таких температурах большая часть спектра приходится на жесткое ультрафиолетовое и мягкое рентгеновское излучение.
Вместе с тем, наблюдаемые белые карлики по своим спектрам преимущественно делятся на две большие группы — «водородные» спектрального класса DA, в спектрах которых отсутствуют линии гелия, которые составляют
80 % популяции белых карликов, и «гелиевые» спектрального класса DB без линий водорода в спектрах, составляющие большую часть оставшихся 20% популяции.
Причина такого различия состава атмосфер белых карликов долгое время оставалась неясной. В 1984 году Ико Ибен рассмотрел сценарии «выхода» белых карликов из пульсирующих красных гигантов, находящихся на асимптотической ветви гигантов, на различных фазах пульсации.
На поздней стадии эволюции у красных гигантов с массами до десяти солнечных в результате «выгорания» гелиевого ядра образуется вырожденное ядро, состоящее преимущественно из углерода и более тяжёлых элементов, окружённое невырожденным гелиевым слоевым источником, в котором идёт тройная гелиевая реакция.
За крайне короткое время (
30 лет) светимость гелиевого источника увеличивается настолько, что горение гелия переходит в конвективный режим, слой расширяется, выталкивая наружу водородный слоевой источник, что ведёт к его охлаждению и прекращению горения водорода. После выгорания избытка гелия в процессе вспышки светимость гелиевого слоя падает, внешние водородные слои красного гиганта сжимаются, и происходит новый поджог водородного слоевого источника.
Астрономические феномены с участием белых карликов
Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.
В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.
При эволюции звёзд различных масс в двойных системах темпы эволюции компонентов неодинаковы, при этом более массивный компонент может проэволюционировать в белый карлик, в то время как менее массивный к этому времени может оставаться на главной последовательности.
В свою очередь, при сходе в процессе эволюции менее массивного компонента с главной последовательности и его переходе на ветвь красных гигантов размер эволюционирующей звезды начинает расти до тех пор, пока она не заполняет свою полость Роша.
Образование дисков белых карликов
Ученые Планетологического института США решили загадку, связанную с образованием дисков из обломков вокруг белых карликов. Известно, что эти диски появляются только через 10-20 миллионов лет после стадии красного гиганта.
Во время фазы красного гиганта звезда теряет значительную часть своей массы, прежде чем превратиться в белый карлик, состоящий из углерода и кислорода, размером с Землю и с половиной массы Солнца.
В это время орбиты любых оставшихся планет дестабилизируются, а астероиды отбрасываются в сторону белого карлика. Когда они приближаются слишком близко, приливные силы звезды превращают их в пыль. Ожидается, что молодые белые карлики быстро сформируют диски, однако этого не происходит.
Оказалось, что задержка объясняется именно температурой белых карликов. Они настолько горячие, что любая пыль быстро испаряется и рассеивается. Это испарение прекращается только тогда, когда температура поверхности белого карлика остывает примерно до 27 тысяч кельвинов. Это согласуется с данными наблюдений: диски были обнаружены у карликов, чья температура ниже критической.
Как появляются звезды типа белый карлик
В 1844 году, немецкий математик Фридрих Бессель исследовал, как перемещается по небу Сириус, ярчайшая звезда северного неба. Оказалось, что движется Сириус не по прямой, а по синусоиде, т.е. своеобразной волнистой линии.
Как были открыты звезды-белые карлики
У Бесселя не было причин сомневаться в законах Ньютона. Если тело не движется по прямой, значит, на него действует некая сила. А единственная сила, влияющая на движение небесных тел,- сила тяготения. Значит, Сириус притягивается каким-то другим телом, находящимся поблизости от него. Поскольку траектория движения Сириуса подобна синусоиде, значит, невидимое тело постоянно находится около звезды, то с одной то с другой стороны. Иными словами, невидимое тело обращается вокруг Сириуса, заставляя и его описывать кривую линию.
Двойные звезды пары Сириус А-B. Сириус А можно найти без труда, а вот белый карлик Сириус B я выделил кружком
Фридрих Бессель сделал единственный правильный вывод: Сириус – это двойная система и мы видим только одного из её членов. Спутник же его слишком слаб и потому с Земли невидим. Почему Бесселю удалось сделать такой вывод не имея никаких фактов, кроме странного движения Сириуса? Потому что он знал физику и был уверен в справедливости законов Ньютона.
В 1863 году американский астроном Алван Кларк, испытывая новый объектив для телескопа, заметил около Сириуса слабую звездочку. Провели наблюдения, и выяснилось, что звездочка и Сириус обращаются около общего для них центра масс 1 раз за 50 лет. Так была открыта вторая звезда из пары – Сириус B. Теория Бесселя блестяще подтвердилась.
В 1924 году Уолтеру Адамсу удалось получить спектр Сириуса В, и тогда обнаружилось, что температура на поверхности этой слабенькой звездочки вдвое выше, чем температура поверхности нашего Солнца. И это было очень удивительно.
Что же такого удивительного было в спектре Сириуса B? Сами посудите:
Количество энергии, излучаемой звездой, пропорционально четвертой степени температуры и квадрату радиуса звезды.
И если бы Сириус В по размерам был подобен Солнцу, то должен был излучать в 16 раз больше, чем наше дневное светило. То есть быть такой яркой звездой, что его должно было хорошо быть видно с Земли даже без телескопа. А в реальности эта звезда едва видна даже в телескоп!
Значит… Сириус В должен иметь значительно меньшие размеры, относительно Солнца. Какого же размер должна быть звезда, с температурой и светимостью Сириуса B? Оказалось, что её радиус его должен составлять около 10000 километров – чуть больше, чем радиус Земли!
Факт легко подтверждался расчетами, однако поверить в него было сложно. Артур Стэнли Эддингтон писал в книге “Звезды и атомы”, опубликованной в 1927 году:
“Сообщение спутника Сириуса после его расшифровки гласило: “Я состою из вещества, плотность которого в 3000 раз выше, чем все, с чем вам когда-нибудь приходилось иметь дело; тонна моего вещества – это маленький кусочек, который умещается в спичечной коробке”. Что можно сказать в ответ на такое послание? В 1914 году большинство из нас ответило так: “Полно! Не болтай глупостей!”
Сириус B принадлежал к новому типу звезд, получившему название белые карлики.
Вырожденные звезды и вырожденное вещество
Вскоре астрономам пришлось принять существование белых карликов как данность. Но, сначала их приняли просто как факт. И лишь полтора десятилетия спустя поняли, почему белые карлики имеют такие маленькие размеры и такую большую плотность.
Английский астрофизик Артур Милн в 1930 году первым предположил, что в белых карликах, находится некое “вырожденное вещество”. Что это значит?
Любая звезда находится в равновесии, потому что в ней противоборствуют две равные силы:
Все частицы вещества притягиваются друг к другу – действуют силы тяжести. Тяжесть стремится сжать звезду.
Но звезда горяча. Частицы в ней хаотически движутся, создавая газовое давление. Давление газа стремится звезду расширить. Температура на поверхности Солнца достигает 6 тысяч градусов, а в недрах – до 20 миллионов градусов!
Обычное газовое давление тем больше, чем выше температура. В нормальных звездах, подобных Солнцу, давление газа способно уравновесить силу тяжести в любой точке звезды. Будь звезда чуть-чуть горячее, она стала бы расширяться (газовое давление оказалось бы больше, чем сила тяжести), но при расширении она стала бы остывать, как и положено газу. Давление упало бы, и расширение прекратилось.
В стационарных звездах обе силы находятся в строгом равновесии друг с другом. Но если сила тяжести существует в звезде всегда, то этого нельзя сказать о газовом давлении. Ведь для того чтобы газ был нагрет, нужна какая-то причина, какая-то, грубо говоря, “печка”. Что же поддерживает температуру звезды?
Это был главный вопрос астрофизики; почему звезды светят? Гипотез по этому поводу выдвигалось много. Лишь в тридцатые годы 20-го века проблема стала проясняться – были открыты ядерные реакции и превращения элементов друг в друга с высвобождением энергии.
Сравнение размеров Солнца (желтый карлик) и Сириус B (белый карлик).
Однако какими бы ни были источники нагрева звезды, они должны себя в конце концов исчерпать. Что случится со звездой после этого? Звезда остынет, как печка без дров, и газовое давление уменьшится. Но тогда сила тяжести начнет сжимать звезду. До каких пор? Одно из двух. Либо отыщется другой вид давления, отличный от обычного газового, и сжатие будет остановлено, либо… Либо такого давления не найдется, и звезда будет сжиматься бесконечно!
До появления квантовой механики астрономы не знали иного давления, кроме давления нагретого газа. Квантовая механика позволила сделать шаг вперед. Оказалось, что даже абсолютно холодный газ (0 градусов по шкале Кельвина) обладает вполне определенным остаточным давлением, причем настолько большим, что оно способно остановить сжатие звезды.
Дело в том, что в квантовой механике существуют два сорта элементарных частиц, различных по своим характеристикам. Поскольку в микромире все свойства меняются не непрерывно, а порциями, квантами, то и вращение элементарных частиц тоже описывается не угловой скоростью, а дискретным квантовым числом – спином. Спин частицы может быть целым (0, 1, 2 и т. д.) или полуцелым (1/2, 2/3 и т. д.).
Поведение частицы зависит от того, целый у нее спин или полуцелый. Еще в начале 1920-х годов, когда квантовая механика только начиналась как научная дисциплина, индийский физик Шатьендранат Бозе (а затем Эйнштейн) описал поведение частиц, обладающих целым спином. Теперь такие частицы называют бозонами. А поведение частиц с полуцелым спином описывается квантовой статистикой, созданной Ферми и Дираком и названной их именами. Сами же частицы называют фермионами.
Бозонами являются фотоны и нейтрино. А протон, электрон, нейтрон являются фермионами.
В квантовой механике существует принцип Паули, который гласит: в одном и том же квантовом состоянии не могут находиться сразу две (и больше) частицы с полуцелым спином. Фермионы не могут обладать одинаковыми энергиями или импульсами! А теперь заглянем внутрь звезды. Источники нагрева исчерпаны, звезда остывает. Представим, что она совсем остыла – температура ее стала равной абсолютному нулю. Естественно, что вся тепловая энергия частиц (энергия их хаотического движения) тоже исчезла. Нет хаотического движения, нет и давления. Ничто не противостоит тяжести, стремящейся сжать звезду.
Ничто ли? Звезда ведь состоит из атомных ядер, протонов, электронов, нейтронов, в общем – из фермионов. И значит, в остывшей звезде действует квантовая статистика Ферми – Дирака, действует и принцип Паули. Две частицы не могут обладать одинаковыми импульсами! Когда мы говорим, что в абсолютно холодной звезде прекращается всякое движение, это справедливо только для одной-единственной частицы. Одна частица действительно обладает нулевым импульсом. Но именно поэтому любая другая частица должна иметь импульс, отличный от нуля (действует принцип Паули!). Третья частица должна иметь еще больший импульс и так далее.
В звезде колоссальное число частиц (в Солнце их около 10 57 ). И как бы мало ни отличались импульсы частиц друг от друга, все же импульс самой энергичной из них окажется огромным. Но если есть импульс, то есть и давление. Если импульс частиц может оказаться большим, то велико может быть и давление. Импульс самой быстрой частицы в такой системе называется граничным Ферми-импульсом, а описанный нами газ называется вырожденным Ферми-газом.
Схема того, как появляется звезда белый-карлик.
Если такой газ нагревать, то вырождение исчезнет – частицы приобретают хаотическое тепловое движение, освобождают уровни, на которых находились раньше, все больше и больше увеличивая свои импульсы… Итак, остывая, звезда сжимается. Частицы все сильнее прижимаются друг к другу. Частиц очень много, граничный импульс Ферми очень велик. Наступает вырождение – давление вырожденного газа становится больше, чем обычное тепловое давление. А если сжатие продолжается, то давление вырожденного газа способно даже уравновесить силу тяжести!
Теория вырожденных звезд была развита в 1931 году астрофизиком Субраманьяном Чандрасекаром. В статье “Сильно сжатая конфигурация звездной массы” он описал звезду из вырожденного газа протонов и электронов. И тут-то вдруг оказалось, что открытые почти сто лет назад белые карлики прекрасно описываются законами квантовой механики, законами статистики Ферми – Дирака.
Что представляют собой белые карлики
В белых карликах давление вырожденного газа как раз таково, что уравновешивает силу тяжести. Плотность вещества в белых карликах (1 т/см ) достаточна для создания нужного давления. Наконец, размеры звезд (10 000 км) достаточны для создания нужной плотности. Все прекрасно сходилось!
Конечно же, температура белых карликов, наблюдаемых в телескопы, не равна абсолютному нулю. Тот же Сириус B нагрет до 10 тысяч градусов. Но что значит тепловая энергия, соответствующая этой температуре, по сравнению с энергией вырождения? Капля в море… Поэтому белые карлики хорошо описываются уравнениями, выведенными для абсолютно холодного вещества.
И еще один очень важный вывод сделал Чандрасекар. Дело в том, что давление вырожденного газа из протонов и электронов тоже не может расти безгранично. Наступит момент, когда и оно не сможет противостоять тяжести. Для этого нужно, чтобы тяжесть превысила некоторый предел. А для этого, в свою очередь, нужно, чтобы масса звезды была больше некоторого критического значения – ведь именно масса звезды и создает тяжесть!
Вывод был прост: должна существовать предельная масса белого карлика. Чандрасекар рассчитал величину этой предельной массы, известной сейчас как Предел Чандрасекара.
Она оказалась равной 1,4 массы Солнца в том случае, если белый карлик состоит из гелия. Работа Чандрасекара произвела огромное впечатление – она объясняла существование наблюдаемого класса звезд, она определяла этим звездам место в общем ряду. Белые карлики, следовало из работы Чандрасекара,- это звезды после исчерпания источников энергии. Другими словами: белые карлики – конечная стадия жизни звезд.
Далеко не все звезды после «смерти» превращаются в белые карлики, более массивные звезды могут образовать нейтронную звезду или даже черную дыру.
Конечно, забегая вперед, важно отметить: все это справделиво, но далеко не для всех типов звезд! Некоторые из них настолько велики, что просто физически не могут сжаться в белый карлик, оставляя после себя нейтронную звезду или даже черную дыру. Однако эти открытия были сделаны несколько позднее.





