Неевклидова геометрия что это простыми словами
Неевклидовы геометрии
Попыток создать геометрию, отличную от евклидовой, было множество. Загвоздка была в том самом постулате о параллельных прямых, который никак не удавалось доказать. И постепенно ученые стали приходить к мысли, что можно построить такую геометрию, где пятый постулат будет отличаться от евклидова. Над этим работали и Карл Гаусс, и Янош Бояи, но первопроходцем стал Николай Иванович Лобачевский, который в 1829 г. опубликовал свои «Начала геометрии». Он оставил первые четыре постулата, но заменил пятый.
Пятый постулат Лобачевского утверждает, что через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие ее, в то время как в евклидовой геометрии через эту точку можно провести только одну такую прямую.
Иногда ошибочно думают, что в геометрии Лобачевского две параллельные прямые пересекаются, но это не так. Более того, в неевклидовой геометрии вообще ничего не говорится о параллельных прямых — только о непересекающихся. Дело в том, что пространство, в котором действует геометрия Лобачевского, обладает отрицательной кривизной. Такое пространство можно вообразить, если представить себе геометрические тела, похожие на воронку и седло. Во всяком случае, неевклидова геометрия, в отличие от евклидовой, реализуется в искривленном пространстве. А ведь сейчас считается, что пространство нашей Вселенной обладает кривизной. Связана неевклидова геометрия и с теорией относительности Эйнштейна. А евклидова геометрия тоже верна, но является ее частным случаем.
Еще одна геометрия
В науке известны три великие геометрии — Евклида, Лобачевского и Римана. Геометрия Римана реализуется на сфере, и там все прямые пересекаются. Но их при этом нельзя назвать параллельными. Дело в том, что параллельные прямые, согласно своему определению, не пересекаются ни в одной геометрии.
НЕЕВКЛИДОВА ГЕОМЕТРИЯ
НЕЕВКЛИДОВА ГЕОМЕТРИЯ, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути к теории относительности.
Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить. Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.
Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (рис. 1), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.
Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180 ° в евклидовой геометрии, больше 180 ° в эллиптической геометрии и меньше 180 ° в гиперболической геометрии.
История.
Первым неевклидовым геометром, вероятно, можно считать самого Евклида. Его нежелание использовать «несамоочевидный» пятый постулат следует хотя бы из того, что свои первые двадцать восемь предложений Евклид доказывает, не прибегая к этому постулату. С первого века до н.э. до 1820 математики пытались вывести пятый постулат из остальных, но преуспели лишь в замене его различными эквивалентными допущениями, такими, как «две параллельные линии всюду равно удалены друг от друга» или «любые три точки, не расположенные на одной прямой, принадлежат окружности». Ближе всех подошел к цели иезуит, логик и математик Дж.Саккери (1667–1733), который начал свои исследования с так называемого четырехугольника Саккери (рис. 2), т.е. с четырехугольника BCED, у которого BC = DE, а углы при вершинах C и E прямые. Заметив, что углы при вершинах B и D обязательно равны, Саккери рассмотрел поочередно три гипотезы: верхние углы четырехугольника тупые, прямые и острые. Он доказал, что любая из этих гипотез, если ее принять для какого-нибудь одного такого четырехугольника, остается в силе для всех таких четырехугольников. Саккери намеревался обосновать гипотезу о том, что верхние углы прямые, доказав, что любая другая гипотеза приводит к противоречию. Вскоре он отверг гипотезу о тупом угле (и тем самым лишил себя возможности открыть эллиптическую геометрию), поскольку, как и все геометры до 1854, рассматривал второй постулат как утверждение о том, что прямая имеет бесконечную длину, и отказываться от этого постулата он не хотел. Точно также Саккери в конце концов отверг и гипотезу об остром угле, но прежде, чем принять это ошибочное решение, он, сам того не ведая, открыл многие теоремы геометрии, получившей впоследствии название гиперболической.
К.Гаусса (1777–1855) принято считать одним из величайших математиков всех времен. Он первым подошел к проблеме с современной точки зрения, согласно которой геометрию, отрицающую пятый постулат, надлежит развивать ради нее самой, не ожидая, что при этом возникнет какое-то противоречие. Письма Гаусса к друзьям говорят о том, что к 1816 он преодолел традиционный предрассудок относительно неизбежности противоречия и развил «антиевклидову» геометрию, удовлетворяющую гипотезе Саккери об остром угле. Но, опасаясь насмешек, он воздерживался от публикации этих идей и тем самым позволил разделить честь открытия гиперболической геометрии (примерно в 1825) венгру Я.Бойяи (1802–1860) и русскому Н.И.Лобачевскому (1793–1856). Бойяи опубликовал свою работу до того, как услышал о Лобачевском, а последний, судя по всему, так никогда и не узнал об исследованиях Бойяи.
В 1854 Б.Риман (1826–1866) заметил, что из неограниченности пространства еще не следует его бесконечная протяженность. Смысл этого утверждения станет яснее, если представить, что в неограниченной, но конечной вселенной астроном в принципе мог бы увидеть в телескоп, обладающий достаточно высокой разрешающей способностью, свой собственный затылок (если отвлечься от небольшой детали, связанной с тем, что свет, отраженный от затылка, достиг бы глаза астронома через тысячи миллионов лет). В своем доказательстве того, что внешний угол при любой вершине треугольника больше внутреннего угла при любой из двух остальных вершин, Евклид неявно использовал бесконечную длину прямой. Из этой теоремы тотчас же следует теорема о том, что сумма любых двух углов треугольника меньше суммы двух прямых углов. Если отказаться от бесконечной длины прямой, то гипотеза Саккери о тупом угле становиться верной и из нее следует, что сумма углов треугольника больше суммы двух прямых. Такое положение дел было давно известно в сферической тригонометрии, где стороны треугольника являются дугами больших кругов. Риман внес эпохальный вклад, распространив представление о конечном, но неограниченном пространстве с двух на три и большее число измерений.
Эллиптическая плоскость.
Такое представление с помощью диаметров и диаметральных плоскостей сферы (при котором диаметр, соединяющий северный и южный полюсы сферы, является «полюсом» экватора), показывает, что все свойства действительной проективной плоскости сохраняются и для эллиптической плоскости.
Геометрия порядка.
Один из подходов к построению гиперболической геометрии исходит из некоторых фундаментальных аксиом порядка, справедливых и в евклидовой, но не в эллиптической геометрии. Если считать «точки» исходными понятиями, то запись [ABC] означает, что точка B лежит «между» точками A и C (это первичное отношение мы принимаем, не пытаясь его определить). Первые четыре аксиомы порядка утверждают, что 1) существует по крайней мере две точки; 2) если A и B – две различные точки, то существует по крайней мере одна точка C, для которой [ABC]; 3) эта точка C отлична от точки A и 4) порядок [ABC] влечет за собой [CBA], но не [BCA]. «Отрезок» AB, по определению, состоит из точек P, для которых [APB], а «луч» A/B («исходящий из A в другую сторону, чем B») – из точек Q, для которых [QAB]. «Прямая» AB состоит из отрезка AB, точек A, B и двух лучей A/B, B/A. Пятая аксиома утверждает, что если C и D – различные точки на прямой AB, то A лежит на прямой CD (из этой же аксиомы следует, что прямые AB и CD совпадают). Шестая аксиома дает нам точку вне данной прямой, а седьмая, сформулированная М.Пашем (1843–1931), позволяет определить плоскость как множество всех точек, коллинеарных с парами точек на одной или двух сторонах данного треугольника.
Абсолютная геометрия.
Множество прямых, параллельных данному лучу, называется «пучком параллельных»; он содержит единственную прямую, проходящую через любую заданную точку. Следуя аналогии с обычным пучком (состоящим из всех прямых, проходящих через точку), мы можем считать, что пучок параллельных определяет «бесконечно удаленную точку», или, по терминологии Д.Гильберта (1862–1943), «конец». Вместо того, чтобы говорить, что два луча (или две прямые) параллельны или что они принадлежат некоторому пучку параллельных M, мы говорим, что два луча имеют общий конец M. Луч, проходящий через точку C и принадлежащий данному пучку параллельных, принято обозначать CM, как если бы это был отрезок; тот же символ CM можно использовать и для обозначения всей прямой. Если BM и CM – параллельные лучи, то фигура MCB называется «асимптотическим треугольником», поскольку она во многом ведет себя, как обычный треугольник. В частности, два асимптотических треугольника конгруэнтны, если у них имеется по конгруэнтной стороне и конгруэнтному углу.
Гиперболическая плоскость.
Из абсолютной геометрии Бойяи можно вывести евклидову геометрию, добавив евклидову (или аффинную) аксиому: через точку B, не лежащую на данной прямой r, можно провести не более одной прямой, параллельной данной. Гиперболическую геометрию можно вывести из абсолютной геометрии, добавив гиперболическую аксиому, повторяющую только что приведенную, но без отрицания «не» во втором случае. Таким образом, лучи BM и BN на рис. 4 могут быть оба параллельны r, а если M и N их концы, то r называется «прямой MN». Любая прямая, например t, являющаяся продолжением стороны угла Р NBM, образует с r пару «гиперпараллельных», т.е. пару прямых, которые не пересекаются и не параллельны. Две такие прямые имеют единственный общий перпендикуляр. Множество прямых, перпендикулярных данной прямой a, называются «пучком гиперпараллельных» с «осью» a.
Одной из самых прекрасных страниц в литературе по неевклидовой геометрии со времен Лобачевского считается предложенное Г.Либманом доказательство того, что площадь треугольника остается конечной, когда две (или три) его стороны становятся бесконечными. Доказательство сводится к разбиению асимптотического треугольника на бесконечную последовательность конечных треугольников и перекладыванию их с соблюдением одного условия: все они должны умещаться внутри некоторого конечного пятиугольника. Метод Либмана восполняет один из двух недостающих шагов в предложенном Гауссом красивом доказательстве того, что площадь любого треугольника пропорциональна его «угловому дефекту» – величине, показывающей, насколько сумма углов треугольника меньше двух прямых. Аналогия с выражением (A + B + C) – p для площади сферического треугольника (на единичной сфере) наводит на мысль о естественной единице измерения, при которой площадь треугольника ABC просто равна p –(A + B + C). Используя эту единицу, Лобачевский выразил угол параллельности, соответствующий расстоянию x, формулой
Кривые, ортогональные обычному пучку прямых, имеют вид концентрических окружностей; кривые, ортогональные пучку параллельных, имеют вид концентрических «орициклов». В действительности орицикл – это предельная форма окружности, центр которой уходит в бесконечность (так, что диаметры окружности становятся параллельными).
Евклидовы модели неевклидовых геометрий.
Ф.Вахтер (1792–1817) за несколько месяцев до безвременной кончины сообщил в письме к Гауссу о своем наблюдении: если пятый постулат Евклида ложен, то сфера, радиус которой стремиться к бесконечности, приближается к предельной поверхности, чья внутренняя геометрия совпадает с геометрией евклидовой плоскости. Тем самым Вахтер предвосхитил появление «орисферы», сыгравшей важную роль в работах Бойяи и Лобачевского. Эта поверхность получается при вращении орицикла вокруг любого из его диаметров. Кривые на орисфере, которые ведут себя, как евклидовы прямые, – орициклы, по которым орисферу пересекают ее диаметральные плоскости.
Неевклидова геометрия
Неевклидова геометрия — в буквальном понимании — любая геометрическая система, отличная от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии.
Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского.
Содержание
Метрика для плоскости
Вид метрики для однородных планиметрий зависит от выбранной системы (криволинейных) координат; далее приводятся формулы для случая полугеодезических координат:
История понятия
См. также
Литература
Геометрия | Алгебраическая геометрия • Аналитическая геометрия • Евклидова геометрия • Неевклидова геометрия • Планиметрия • Стереометрия • Тригонометрия |
---|---|
Топология | Общая топология • Алгебраическая топология |
Смежные направления | Дифференциальная геометрия и топология • Геометрическая топология |
Полезное
Смотреть что такое «Неевклидова геометрия» в других словарях:
НЕЕВКЛИДОВА ГЕОМЕТРИЯ — геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера
Неевклидова геометрия — см. Геометрия, Лобачевский и Пангеометрия … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
неевклидова геометрия — неевкл идова геом етрия, неевкл идовой геом етрии … Русский орфографический словарь
неевклидова геометрия — … Орфографический словарь русского языка
неевклидова — (геометрия) … Орфографический словарь-справочник
Геометрия Лобачевского — (1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского Геометрия Лобачевского (гип … Википедия
Геометрия — (от др. греч. γῆ Земля и μετρέω «мерю») раздел математики, изучающий пространственные структуры, отношения и их обобщения[1]. Содержание … Википедия
Геометрия Римана — Не следует путать с Риманова геометрия. Геометрия Римана (эллиптическая геометрия) одна из трёх «великих геометрий» (Евклида, Лобачевского и Римана). Если геометрия Евклида реализуется на поверхностях с постоянной нулевой гауссовой… … Википедия
ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера
неевклидова — *неевкли/дова (геометрия) … Слитно. Раздельно. Через дефис.
НЕЕВКЛИДОВЫ ГЕОМЕТРИИ
Неевклидовы геометрии как синтетические теории. Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Именно, согласно аксиоме о параллельных евклидовой геометрии через точку, не лежащую на данной прямой а, проходит точно одна прямая, к-рая лежит в одной плоскости с прямой аи не пересекает эту прямую; в геометрии Лобачевского принимается, что таких прямых более одной (затем доказывается, что их бесконечно много).
В геометрии Рпмана принимается аксиома: каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных. Таким образом, система аксиом, лежащая в основе геометрии Римана, необходимо должна отличаться от системы аксиом евклидовой геометрии не только заменой одной аксиомы о параллельных другим утверждением, но и части остальных аксиом. Различными в этих геометриях являются аксиомы, к-рые служат для обоснования т. н. отношений порядка геометрия, элементов. Сущность дела в следующем: в евклидовой геометрии и в геометрии Лобачевского порядок точек на прямой является линейным, т. е. подобным порядку во множестве действительных чисел; в геометрии Римана порядок точек на прямой является циклическим, т. е. подобным порядку во множестве точек окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую (топологич. моделью плоскости Римана служит проективная плоскость).
Требования аксиом, определяющих движение фигур, для всех трех геометрий одинаковы.
Примеры теорем Н. г,
1) В геометрии Лобачевского сумма внутренних углов любого треугольника меньше двух прямых; в геометрии Римана эта сумма больше двух прямых (в евклидовой геометрии она равна двум прямым).
2) В геометрии Лобачевского площадь треугольника выражается формулой
где — внутренние углы треугольника, R- постоянная, к-рая определяется выбором единицы измерения площадей. В геометрии Римана имеет место формула
при аналогичном значении символов (в евклидовой геометрии зависимости между площадью треугольника и суммой его углов нет).
3) В геометрии Лобачевского между сторонами и углами треугольника существует ряд зависимостей, напр.:
При нек-ром согласовании линейного масштаба и единицы измерения площадей постоянная Rв формулах (1), (3), (4) будет одинаковой. Число Rназ. радиусом кривизны плоскости (или пространства) Лобачевского. Число Rпри данном масштабе выражает определенный отрезок в плоскости (пространстве) Лобачевского, к-рый также называют радиусом кривизны. Если масштаб меняется, то меняется число R, но радиус кривизны, как отрезок, остается неизменным. Если радиус кривизны принять за масштабный отрезок, то R=1. В геометрии Римана существуют сходные равенства:
(для произвольного треугольника) и
(для прямоугольного) при аналогичном значении символов. Число Rназ. радиусом кривизны плоскости (или пространств а) Римана. Как видно из формул (4) и (6), в каждой из Н. г. гипотенуза прямоугольного треугольника определяется его углами; более того, в Н. г. стороны любого треугольника определяются его углами, т. е. не существует подобных треугольников, кроме равных (в евклидовой геометрии нет формул, аналогичных формулам (4) и (6), и нет никаких других формул, выражающих линейные величины через угловые). При замене R на iR формулы (1), (3), (4) превращаются в формулы (2), (5), (6); вообще, при замене Rна iR все метрич. формулы геометрии Лобачевского (сохраняющие при этой замене геометрич. смысл) переходят в соответствующие формулы геометрии Римана. При и те и другие дают в пределе формулы евклидовой геометрии (либо теряют смысл). Стремление к бесконечности величины Rозначает, что масштабный отрезок является бесконечно малым по сравнению с радиусом кривизны (как с отрезком). То обстоятельство, что при этом формулы Н. г. переходят в пределе в формулы евклидовой геометрии, означает, что для малых (по сравнению с радиусом кривизны) неевклидовых фигур соотношения между их элементами мало отличаются от евклидовых.
Неевклидовы геометрии в плане дифференциальной геометрии. В каждой из Н. г. дифференциальные свойства плоскости аналогичны дифференциальным свойствам поверхностей евклидова пространства; именно: в неевклидовой плоскости могут быть введены внутренние координаты и, v так, что дифференциал ds дуги кривой, соответствующей дифференциалам координат, определяется равенством:
Пусть, в частности, в качестве координаты ипроизвольной точки Мберется длина перпендикуляра, опущенного из Мна фиксированную прямую, а в качестве координаты v- расстояние от фиксированной точки Оэтой прямой до основания указанного перпендикуляра; величины и, v следует брать со знаком, подобно обычным декартовым координатам. Тогда формула (7) для плоскости Лобачевского будет иметь вид
а для плоскости Римана
Так как метрич. форма определяет внутреннюю геометрию поверхности, то при такой замене и другие метрич. соотношения геометрии Лобачевского переходят в метрич. соотношения.
СОДЕРЖАНИЕ
История
Задний план
Если прямая линия попадает на две прямые таким образом, что внутренние углы на одной стороне вместе меньше двух прямых углов, тогда прямые линии, если они образуются бесконечно, пересекаются на той стороне, на которой углы меньше, чем два прямых угла.
Другие математики придумали более простые формы этого свойства. Однако, независимо от формы постулата, он постоянно кажется более сложным, чем другие постулаты Евклида :
1. Провести прямую линию из любой точки в любую точку.
2. Построить [удлинить] конечную прямую линию непрерывно в прямую.
3. Описать круг с любым центром и расстоянием [радиусом].
4. Все прямые углы равны друг другу.
Джордано Витале в своей книге Euclide restituo (1680, 1686) использовал четырехугольник Саккери, чтобы доказать, что если три точки равноудалены на основании AB и вершине CD, то AB и CD везде равноудалены.
В работе под названием Euclides ab Omni Naevo Vindicatus ( Евклид, свободный от всех недостатков ), опубликованной в 1733 году, Саккери быстро отбросил эллиптическую геометрию как возможность (некоторые другие аксиомы Евклида должны быть изменены, чтобы эллиптическая геометрия работала) и принялся за работу, доказывая, что большое количество результатов по гиперболической геометрии.
В конце концов он достиг точки, когда он считал, что его результаты демонстрируют невозможность гиперболической геометрии. Его утверждение, по-видимому, было основано на предположениях Евклида, поскольку не было логического противоречия. В этой попытке доказать евклидову геометрию он вместо этого непреднамеренно открыл новую жизнеспособную геометрию, но не реализовал ее.
В то время было широко распространено мнение, что Вселенная работает в соответствии с принципами евклидовой геометрии.
Открытие неевклидовой геометрии
Терминология
Есть математики, которые по-разному расширяют список геометрий, которые следует называть «неевклидовой».