Нейронный процессор что это
Нейроморфный процессор Intel Loihi. Что это и как это работает?
Представьте себе будущее, где сложные решения могут приниматься быстрее и адаптироваться со временем. Где социальные и индустриальные проблемы могут автоматически решаться, используя полученный ранее опыт. Это будущее, где свидетели, используя приложения распознания изображений, могут проанализировать снимки с уличных камер и быстро передавать данный для поиска пропавшего или похищенного человека. Это будущее, где светофоры автоматически синхронизируют свою работу с потоком транспорта, уменьшая заторы и оптимизируя время старта и остановки. Это будущее, где роботы более автономны, а эффективность работы значительно выше.
Данные высказывания принадлежат доктору Майклу Мэйбери (корпоративный вице-президент и управляющий директор Intel Labs в Intel Corporation), который поделился с общественностью деталями нового творения Intel Labs — нейроморфного чипа Loihi.
Растущий спрос на сбор, анализ данных и принятие решений в области высокодинамических и неструктурированных природных данных приводит к росту спроса на компьютеры, которые опережают классические CPU и GPU архитектуры. Дабы поспевать за темпом эволюции технологий и дабы вывести сами вычисления за пределы ПК или сервера, Intel работал последние 6 лет над специализированными архитектурами, которые могут ускорить классические компьютерные платформы. Intel также увеличил объем инвестиций в области ИИ (искусственный интеллект) и нейроморфных вычислений.
Доктор Майкл Мэйбери (корпоративный вице-президент и управляющий директор Intel Labs в Intel Corporation)
Наша работа в области нейроморфных вычислений построена на десятилетиях исследований и партнерства, начиная с профессора CalTech Карвер Мида (Carver Mead), который был известен за свою фундаментальную работу в проектировании полупроводников. Комбинация опыта в микросхемах, физике и биологии создала условия для новых идей. Идеи были просты, но революционны: сравнить машины с человеческим мозгом. Высокий уровень сотрудничества разных структур и людей в данной область исследований способствует дальнейшему развитию науки.
Компания Intel, в лице своего подразделения Intel Labs, разработала первый в своем роде самообучающийся нейроморфный чип — Loihi — который имитирует функционирование мозга в процессе обучения работы на основе влияния окружающей среды. Этот невероятно энергоэффективный чип, который использует данные для обучения и формирования выводов, становится умнее со временем и не нуждается в тренировке традиционным путем. Он использует новый подход к вычислению через асинхронный пикинг.
Мы считаем, что ИИ находится в зачаточном состоянии, и больше методов и архитектур, таких как Loihi, будут сопутствовать его развитию. Нейроморфные вычисления черпают вдохновение из нашего нынешнего понимания архитектуры мозга и связанных с ним вычислений. Нейронные сети мозга передают информацию с помощью импульсов или пиков, модулируя синаптические связи на основе тайминга этих пиков, и хранят эти изменения локально на межсоединениях. Интеллектуальное поведение формируется за счет кооперативного и сопернического взаимодействия между окружающей средой и несколькими регионами в нейронных сетях мозга.
Модели машинного обучения, такие как глубокое обучение, достигли значительных успехов за счет использования обширных учебных наборов для распознания объектов и событий. Однако эти системы машинного обучения не так хороши, если не имеют учебных наборов для распознания определенного события, происшествия или элемента.
Потенциальная польза от самообучающегося чипа практически безгранична. К примеру, считывание пульса человека в разных условиях (после бега, во время приема пищи, перед сном) и передача этих данных в нейроморфную систему для определения «нормального» сердцебиения. Далее система может постоянно мониторить полученные данные пульса и определять те случаи, когда пульс не есть «нормальный». Система может быть персонализирована под каждого пользователя.
Этот тип логики может также применятся и в других сферах, таких как кибербезопасность, где аномалии или отличия в потоках данных могут идентифицировать взлом, поскольку система знает какие показатели являются «нормальными» (правильными).
Подробнее о тестовом чипе Loihi
Исследовательский тестовый чип Loihi обладает цифровыми схемами, которые имитируют основную механику мозга, делая машинное обучение более быстрым и эффективным, при этом требуя меньших вычислительных мощностей. Нейроморфная модель черпает вдохновение из того, как нейроны взаимодействуют и учатся, используя пики и синоптическую пластичность, которые могут быть смоделированы на основе тайминга. Это может помочь компьютерам саморганизоваться и принимать решения на основе шаблонов и ассоциаций.
Тестовый вариант чипа Loihi представляет высокую гибкость обучения в пределах самого чипа. Это позволяет машинам быть автономными и адаптироваться в реальном времени, вместо ожидания следующего апдейта из облака. Исследователи продемонстрировали обучение со скоростью в 1 миллион раз превышающей скорость типичных пиковых нейронных сетей (при измерении общих операций) во время процесса получение как можно более точного результата в решении задачи распознавания цифр MNIST (объёмная база данных образцов рукописного написания цифр). В сравнении с другими технологиями, такими как свёрточные нейронные сети и нейронные сети глубокого обучения, тестовый чип Loihi использовал гораздо меньше ресурсов для решения тех же задач.
Возможности самообучения, раскрытые этим тестовым чипом, имеют огромный потенциал в совершенствовании автоматизированных и индустриальных приложений, как и персональной робототехники — любое приложение, которое извлечет пользу из автоматизированных операций и непрерывного обучения в неструктурированной среде. К примеру, распознание движения машины или велосипеда.
Кроме того, этот метод в 1000 раз более энергоэффективен чем стандартные методы для компьютерного обучения.
В первой половине 2018 года тестовый чип Loihi будет распространен среди передовых университетов и исследовательских институтов (работающих в сфере развития ИИ).
Функции Loihi включают в себя:
Ожидается, что благодаря развитию в области вычислительных и алгоритмических инноваций преобразующая сила ИИ сильно повлияет на общество. Сегодня мы в Intel всеми силами стараемся оправдывать закон Мура и держать лидерство в производстве, чтобы представить на рынке широкий спектр продуктов — процессоры Intel Xeon, технологию Intel Nervana, технологию Intel Movidius и Intel FPGA, — которые удовлетворяют уникальные требования ИИ процессов.
Аппаратное и программное обеспечение, как общего, так и персонального назначения сейчас вступают в игру по полной программе. К примеру, процессор Intel Xeon Phi широко используется в мире для научных вычислений, он создал некоторые из самых крупных моделей интерпретации крупномасштабных научных проблем. Movidius Neural Compute Stick — яркий пример 1 ватт развертывания ранее обученных моделей.
Рабочие нагрузки ИИ развиваются, становясь все более сложными и разнообразными. Они будут испытывать пределы возможностей сегодняшних доминирующих вычислительных архитектур и ускорять новые нестандартные подходы. Глядя в будущее, Intel считает, что нейроморфные вычисления дают возможность обеспечить производительность уровня exascale, вдохновленной тем, как работает мозг.
Я надеюсь, вы будете следить за захватывающими событиями, которые произойдут в Intel Labs в следующие несколько месяцев, когда мы распространим такую концепцию как нейромофные вычисляя с целью поддержки мировой экономики на следующие 50 лет. В будущем с нейроморфными вычислениями, все что вы можете вообразить и даже больше перейдет от возможного к реальному, поскольку поток интеллекта и принятия решений становится все более быстрым.
Видение Intel касательно разработки инновационных вычислительных архитектур остается непоколебимым, и мы знаем, как выглядит будущее вычислений, потому что сегодня мы его создаем.
Зачем нам нужны нейронные процессоры?
Нейросети сейчас называют новым электричеством. Мы их не замечаем, но пользуемся каждый день. Face ID в iPhone, умные ассистенты, сервисы перевода, и даже рекомендации в YouTube — всё это нейросети. Они развиваются настолько стремительно, что даже самые потрясающие открытия выглядят как обыденность.
Например, недавно в одном из самых престижных научных журналов Nature опубликовали исследование группы американских ученых. Они создали нейросеть, которая может считывать активность коры головного мозга и преобразовывать полученные сигналы в речь. С точностью 97 процентов. В будущем, это позволит глухонемым людям «заговорить».
И это только начало. Сейчас мы стоим на пороге новой технической революции сравнимой с открытием электричества. И сегодня мы объясним вам почему.
Как работают нейросети?
Центральный процессор — это очень сложный микрочип. Он умеет выполнять кучу разных инструкций и поэтому справляется с любыми задачами. Но для работы с нейросетями он не подходит. Почему так?
Сами по себе нейросетевые операции очень простые: они состоят всего из двух арифметических действий: умножения и сложения.
Например, чтобы распознать какое-либо изображение в нейронную сеть нужно загрузить два набора данных: само изображение и некие коэффициенты, которые будут указывать на признаки, которые мы ищем. Эти коэффициенты называются весами.
Вот например так выглядят веса для рукописных цифр. Похоже как будто очень много фоток цифр наложили друг на друга.
А вот так для нейросети выглядит кошка или собака. У искусственного интеллекта явно свои представления о мире.
Но вернёмся к арифметике. Перемножив эти веса на исходное изображение, мы получим какое-то значение. Если значение большое, нейросеть понимает:
— Ага! Совпало. Узнаю, это кошка.
А если цифра получилась маленькой значит в областях с высоким весом не было необходимых данных.
Вот как это работает. Видно как от слоя к слою сокращается количество нейронов. В начале их столько же сколько пикселей в изображении, а в конце всего десять — количество ответов. С каждым слоем изображение упрощается до верного ответа. Кстати, если запустить алгоритм в обратном порядке, можно что-нибудь сгенерировать.
Всё вроде бы просто, да не совсем. В нейросетях очень много нейронов и весов. Даже в простой однослойной нейросети, которая распознает цифры на картинках 28 x 28 пикселей для каждого из 10 нейронов используется 784 коэффициента, т.е. веса, итого 7840 значений. А в глубоких нейросетях таких коэффициентов миллионы.
И вот проблема: классические процессоры не заточены под такие массовые операции. Они просто вечность будут перемножать и складывать и входящие данные с коэффициентами. Всё потому, что процессоры не предназначены для выполнения массовых параллельных операций.
Ну сколько ядер в современных процессорах? Если у вас восьмиядерный процессор дома, считайте вы счастливчик. На мощных серверных камнях бывает по 64 ядра, ну может немного больше. Но это вообще не меняет дела. Нам нужны хотя бы тысячи ядер.
Где же взять такой процессор? В офисе IBM? В секретных лабораториях Пентагона?
На самом деле такой процессор есть у многих из вас дома. Это ваша видеокарта.
Видеокарты как раз заточены на простые параллельные вычисления — отрисовку пикселей! Чтобы вывести на 4K-монитор изображение, нужно отрисовать 8 294 400 пикселей (3840×2160) и так 60 раз в секунду (или 120/144, в зависимости от возможностей монитора и пожеланий игрока, прим.ред.). Итого почти 500 миллионов пикселей в секунду!
Видеокарты отличаются по своей структуре от CPU. Почти всё место в видеочипе занимают вычислительные блоки, то есть маленькие простенькие ядра. В современных видюхах их тысячи. Например в GeForce RTX2080 Ti, ядер больше пяти тысяч.
Всё это позволяет нейросетям существенно быстрее крутиться GPU.
Триллионы операций в секунду звучит внушительно, но для действительно продвинутых нейронных вычислений — это как запустить FarCry на калькуляторе.
Недавно мы игрались с алгоритмом интерполяции кадров DAIN, основанном на машинном обучении. Алгоритм очень крутой, но с видеокартой Geforce 1080 уходило 2-3 минуты на обработку одного кадра. А нам нужно чтобы подобные алгоритмы работали в риалтайме, да и желательно на телефонах.
Именно поэтому существуют специализированные нейронные процессоры. Например, тензорный процессор от Google. Первый такой чип в Google сделали еще в 2015 году, а в 2018 вышла уже третья версия.
Производительность второй версии 180 TFLOPS, а третьей — целых 420 TFLOPS! 420 Триллионов операций в секунду. Как они этого добились?
Каждый такой процессор содержит 10-ки тысяч крохотных вычислительных ядер, заточенных под единственную задачу складывать и перемножать веса. Пока, что он выглядит огромным, но через 15 лет он существенно уменьшится в размерах. Но это еще фигня. Такие процессоры объединяться в кластеры по 1024 штуки, без каких либо просадок в производительности. GPU так не могут.
Такой кластер из тензорных процессоров третьей версии могут выдать 430 PFLOPS (пета флопс) производительности. Если что, это 430 миллионов миллиардов операций в секунду.
Где мы и что нас ждёт?
Но как мы уже говорили, это только начало. Текущие нейронные суперкомпьютеры — это как первые классические мейнфреймы занимавшие, целые этажи в зданиях.
В 2000 году первый суперкомпьютер с производительностью 1 терафлопс занимал 150 квадратных метров и стоил 46 миллионов долларов.
Спустя 15 лет NVIDIA мощностью 2,3 терафлопса, которая помещается в руке стоит 59$.
Так что в следующие 15-20 лет суперкомпьютер Google тоже поместится в руке. Ну или где мы там будем носить процессоры?
Кадр из режиссерской версии фильма «Терминатор-2»
А мы пока ждём момента, довольствуемся нейромодулями в наших смартфонах — в тех же Qualcomm Snapdragon’ах, Kirin’ах от Huawei и в Apple Bionic — они уже тихо делают свою работу.
И уже через несколько презентаций они начнут меряться не гигагерцами, ядрами и терафлопсами, а чем-то понятным для всех — например, распознанных котиках в секунду. Всё лучше, чем попугаи!
Нейроморфные вычисления и их успехи
Вот уже лет сто, а то и больше, человечество мечтает, размышляет, пишет, поёт, снимает фильмы о машинах, которые могут думать, рассуждать и, подобно нам, обладают разумом. Произведения литературного и кинематографического искусства — начиная с романа «Едгин», опубликованного в 1872 году Сэмюэлем Батлером, со статьи Эдгара Аллана По «Игрок в шахматы Мельцеля», с фильма «Метрополис» 1927 года — продемонстрировали миру идею, в соответствии с которой машины могут думать и рассуждать как люди. Причём, в этой идее нет ни магии, ни ещё чего-то фантастического. Те, кого захватывала эта идея, вдохновлялись автоматонами из глубокой древности и работами философов — таких, как Аристотель, Раймунд Луллий, Томас Гоббс и многих, многих других.
Идеи философов о человеческом разуме привели к вере в то, что рациональное мышление можно описать, пользуясь алгебраическими или логическими механизмами. Позже, с появлением электронных приборов, компьютеров и закона Мура, человечество попало в состояние постоянного ожидания того, что вот ещё немного — и появится машина, разум которой сравним с человеческим. Некоторые объявляли разумные машины спасителями человечества, а некоторые видели в этих машинах источник великого бедствия, так как полагали, что появление на Земле второй разумной сущности приведёт к уничтожению первой, то есть — людей.
Свет компьютеризированных систем искусственного интеллекта ярко вспыхивал в истории человечества уже несколько раз. Это было в 1950-х, в 1980-х и в 2010-х годах. К сожалению, за обоими предыдущими ИИ-бумами следовала «ИИ-зима». Искусственный интеллект не оправдывал возложенных на него ожиданий и выходил из моды. В том, что наступали эти «зимы», часто винили недостаток вычислительной мощности, неправильное понимание устройства человеческого мозга, или рекламную шумиху и необоснованные домыслы, которыми была окутана тема ИИ. В разгар сегодняшнего «ИИ-лета» большинство исследователей, работающих в сфере искусственного интеллекта, основное внимание уделяют использованию постоянно увеличивающейся доступной им вычислительной мощности для увеличения глубины создаваемых ими нейронных сетей. «Нейронные сети», несмотря на своё многообещающее название, хотя и созданы под влиянием знаний о нейронах головного мозга человека, похожи на сети настоящих нейронов лишь на поверхностном уровне.
Некоторые исследователи полагают, что уровня общего умственного развития, соответствующего человеческому, можно достичь, просто добавляя всё больше и больше слоёв к упрощённым моделям головного мозга, вроде свёрточных нейронных сетей, и скармливая им всё больше и больше данных. Это направление развития ИИ подпитывают те невероятные вещи, на которые способны такие сети, возможности которых постоянно понемногу возрастают. Но нейронные сети, которые, в буквальном смысле слова, творят чудеса, всё же, являются узкоспециализированными системами, умеющими добиваться превосходных успехов лишь в решении какой-то одной задачи. ИИ, который божественно играет в игры Atari, не способен, если человек не оснастит его этими возможностями, писать музыку или размышлять о погодных закономерностях. Более того — качество входных данных очень сильно влияет на качество работы нейронных сетей. Их возможности по формированию логических заключений ограничены. В некоторых сферах применения нейронных сетей это приводит к неудовлетворительным результатам. Есть мнение, что, например, рекуррентные нейронные сети никогда не смогут достичь того уровня общего умственного развития и гибкости, которые характерны для людей.
Но, в то же время, некоторые исследователи пытаются построить что-то, больше похожее на человеческий мозг. Они для этого, как вы, наверное, уже догадались, стремятся к созданию как можно более точных моделей мозга. Учитывая то, что мы живём в эпоху золотого века компьютерных архитектур, похоже, что сейчас — самое время создать что-то новое в сфере аппаратного обеспечения компьютеров. Подобное «железо» уже, на самом деле, создают. Это — нейроморфное аппаратное обеспечение.
Что такое нейроморфные вычисления?
«Нейроморфный» — это модный термин, который используется в применении к любым программам или устройствам, которые пытаются сымитировать деятельность мозга. Хотя человечество ещё очень многого не знает о мозге, за несколько последних лет в этой сфере достигнуты кое-какие замечательные успехи. Одной из широко принятых теорий, касающихся мозга, является гипотеза, в соответствии с которой неокортекс (в широком смысле — место, где принимаются решения и обрабатывается информация) состоит из миллионов кортикальных колонок или модулей. Отдельные системы мозга, такие, как гиппокамп, имеют узнаваемую структуру, которая отличает их от других частей мозга.
То же самое справедливо и для неокортекса, который сильно отличается в плане структуры, например, от заднего мозга. В неокортексе имеются области, отвечающие, как известно, за выполнение различных функций — таких, как зрение и слух, но мозговое вещество, из которого сформирован неокортекс, в плане структуры, выглядит весьма однородным. Если перейти на более абстрактную точку зрения, то получится, что части неокортекса, ответственные за зрение, очень похожи на те, что отвечают за слух. Но, в то же время, системы заднего мозга сильно отличаются одна от другой, их структура зависит от их функций. Этот подход к пониманию устройства мозга привёл к появлению гипотезы Вернона Маунткасла, в соответствии с которой имеется некий центральный алгоритм, или некая центральная структура, благодаря которым неокортекс решает свои задачи. Кортикальная колонка — это своего рода логическая единица коры головного мозга. Она обычно состоит из 6 слоёв, причём, в пределах колонки, вертикальных связей между этими слоями гораздо больше, чем горизонтальных связей между отдельными колонками. Это значит, что подобную логическую единицу можно несколько раз скопировать и сформировать благодаря этому искусственный неокортекс. У этой идеи есть хорошие перспективы в свете технологий создания сверхбольших интегральных схем. Наши производственные процессы весьма эффективны в деле создания миллионов копий неких структур на маленькой площади.
Хотя рекуррентные нейронные сети (RNN, Recurrent Neural Network) относятся к полносвязным сетям, настоящий мозг придирчиво относится к вопросу о том, что с чем должно быть соединено. Распространённой наглядной моделью нейронных сетей является пирамида, состоящая из отдельных слоёв. Нижний слой извлекает признаки из входных данных, а каждый последующий слой извлекает из того, что подаётся на его вход, всё более абстрактные признаки. Анализ лучше всего исследованных систем мозга показывает, что в этих системах существует широкое разнообразие иерархических структур, в которых имеются обратные связи. В пределах этих иерархических структур существуют обратные и прямые связи, соединяющие, не обязательно по порядку, различные уровни этих структур. Такой вот «пропуск уровней» можно считать нормой, но не жёстким правилом, а это свидетельствует о том, что именно структура связей может быть ключом к тем свойствам, которые демонстрирует мозг человека.
Это привело нас к следующей общепринятой точке зрения: большинство нейронных сетей используют метод «интегрировать-и-сработать» с утечками. В RNN каждый узел испускает сигнал на каждом временном шаге работы сети, а настоящие нейроны испускают сигналы лишь тогда, когда мембранный потенциал нейрона достигает порогового значения (в реальности, правда, всё несколько сложнее). Есть искусственные нейронные сети, в которых учтена эта особенность, и которые более точно, с биологической точки зрения, имитируют работу мозга. Это — так называемые импульсные нейронные сети (Spiking Neural Networks, SNN). Модель, соответствующая методу «интегрировать-и-сработать» с утечками не так точна, с биологической точки зрения, как другие модели — вроде модели Хиндмарша — Роуз или модели Ходжкина — Хаксли. В рамках этих моделей учитываются функции нейротрансмиттеров и синаптических щелей. Но реализация таких моделей требует значительной вычислительной мощности. То, что нейроны испускают сигналы не всегда, означает, что числа должны быть представлены в виде последовательностей потенциалов действия нейронов, а конкретные значения должны быть соответствующим образом закодированы.
Как далеко продвинулись нейроморфные вычисления?
Несколько групп исследователей занимаются непосредственным моделированием нейронов. Например — это делается в рамках проекта OpenWorm: создана модель нервной системы круглого червя Caenorhabditis elegans, состоящая из 302 нейронов. Сейчас цель многих подобных проектов заключается в увеличении количества моделируемых нейронов, в повышении точности моделей, в оптимизации производительности программ. Например, в рамках проекта SpiNNaker создан суперкомпьютер начального уровня, позволяющий, в реальном времени, моделировать работу огромного количества нейронов. А именно, каждое процессорное ядро суперкомпьютера может обслуживать 1000 нейронов. В конце 2018 года проектом достигнут рубеж в 1 миллион ядер, а в 2019 году было объявлено о гранте на постройку подобной машины второго поколения (SpiNNcloud).
Многие компании, правительственные организации и университеты занимаются поиском необычных материалов и технологий для создания искусственных нейронов. В этой связи можно вспомнить о мемристорах, о спин-трансферных осцилляторах, о магнитных переключателях на основе джозефсоновских переходов. Хотя в моделях эти технологии и выглядят весьма многообещающими, огромная пропасть лежит между парой десятков смоделированных нейронов (или нейронов, размещённых на небольшой экспериментальной плате) и тысячами, если не миллионами нейронов, которые необходимы для достижения машиной реальных человеческих возможностей.
Другие исследователи (они работают, например, в IBM, Intel, BrainChip, в некоторых университетах) пытаются создать аппаратные реализации SNN, опираясь на существующие технологии, в частности — на технологию CMOS. Одна из таких платформ разработана Intel и представлена нейроморфным процессором Loihi, на основе которого можно создавать достаточно крупные системы.
Нейроморфная система, использующая 64 чипа Loihi для моделирования 8 миллионов нейронов
В первой половине 2020 года специалистами Intel была опубликована работа, в которой шла речь об использовании 768 чипов Loihi для реализации алгоритма поиска ближайшего соседа. Машина, имитирующая работу 100 миллионов нейронов, показала многообещающие результаты, продемонстрировав задержки, выглядящие лучше, чем в системах с большими, заранее рассчитанными индексами, и давая возможность добавлять в набор данных новые записи за время O(1).
Есть ещё крупномасштабный проект Human Brain Project, цель которого — лучше понять биологические нейронные сети. В нём имеется система, называемая BrainScaleS-1, при создании которой применяются цельнопластинные интегральные схемы, использующая для имитации нейронов аналоговые и смешанные сигналы. BrainScaleS-1 состоит из 12 пластин, каждая из которых моделирует 200000 нейронов. Подобная система следующего поколения, BrainScaleS-2, сейчас находится в разработке. Ожидается, что она будет готова в 2023 году.
Проект Blue Brain Project нацелен на создание как можно более точной копии мозга мыши. Хотя речь идёт и не о человеческом мозге, опубликованные в рамках этого проекта исследования и модели бесценны в деле продвижения человечества к созданию нейроморфных искусственных нейронных сетей, способных найти реальное применение.
В результате можно сказать, что мы находимся в самом начале пути к созданию чего-то такого, что способно решать какие-то реальные задачи. А главным препятствием на этом пути является тот факт, что мы до сих пор не обладаем достаточными знаниями о том, как устроен наш мозг, и о том, как он обучается. Когда речь идёт о нейронных сетях, размеры которых сравнимы с размерами нашего мозга, одной из самых сложных задач оказывается обучение таких сетей.
Нужны ли человечеству нейроморфные аппаратные устройства?
Что если человечеству не нужно нейроморфное аппаратное обеспечение? Например, алгоритм обратного обучения с подкреплением (Inverted Reinforcement Learning, IRL) позволяет машинам создавать функцию вознаграждения, не заостряя внимание исследователей на нейронных сетях. Просто наблюдая за чьими-либо действиями можно выяснить цель этих действий и воссоздать их через найденную функцию вознаграждения, которая обеспечивает воспроизведение наиболее эффективных действий эксперта (сущности, за которой осуществляется наблюдение). Проводятся дальнейшие исследования, касающиеся работы с экспертами, поведение которых не является оптимальным, с целью выяснения того, что они делали, и того, что они стремились сделать.
Многие продолжат продвигаться в сфере нейроморфных вычислений, применяя уже существующие сети, сравнительно простые, с использованием улучшенных функций вознаграждения. Например, в свежей статье о копировании частей мозга стрекозы с использованием простой трёхслойной нейронной сети, показано, что систематизированный подход, основанный на хороших знаниях моделируемого объекта, способен дать отличные результаты. Хотя рассмотренные в статье нейронные сети не показывают столь же замечательных результатов, что и стрекозы, живущие в своей среде, трудно сказать, не является ли это следствием того, что стрекозы, в сравнении с другими насекомыми, обладают гораздо лучшими «лётными возможностями».
Каждый год мы видим всё новые и новые успехи техник глубокого обучения. Кажется, что выйдут ещё одна-две публикации, и эта сфера из интересной превратится в потрясающую воображение, а потом — в нечто такое, что и в голове не укладывается. Люди не умеют предсказывать будущее. Может — так всё и будет. А может — и нет. Возможно, если человечество продолжит двигаться в том же направлении — оно найдёт что-то новое, лучше поддающееся обобщению, которое можно будет реализовать средствами существующих нейронных сетей глубокого обучения.
Что делать тем, кому интересны нейроморфные вычисления?
Если вы хотите заняться нейроморфными вычислениями — учитывайте то, что многие проекты, упомянутые в этой статье, являются опенсорсными. Используемые в них наборы данных и модели можно найти на GitHub и на других подобных площадках. Среди таких проектов можно отметить, например, потрясающие NEURON и NEST. Многие энтузиасты нейроморфных вычислений рассказывают о своих экспериментах на OpenSourceBrain. А ещё, например, можно создать собственное нейроморфное «железо» — вроде NeuroBytes (если вас интересует именно тема «железа» — взгляните на этот обзор 2017 года).
В результате можно сказать, что, хотя нейроморфным вычислениям предстоит пройти ещё долгий путь, их будущее выглядит многообещающим.
Занимались ли вы нейроморфными вычислениями?