Полезное
Смотреть что такое «Нуклеиновые кислоты» в других словарях:
НУКЛЕИНОВЫЕ КИСЛОТЫ — полинуклеотиды, фосфорсодержащие биополимеры, имеющие универсальное распространение в живой природе. Впервые обнаружены Ф. Мишером в 1868 в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Термин «Н. к.» предложен в 1889.… … Биологический энциклопедический словарь
НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Современная энциклопедия
НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды) высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Большой Энциклопедический словарь
Нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты – дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Иллюстрированный энциклопедический словарь
НУКЛЕИНОВЫЕ КИСЛОТЫ — НУКЛЕИНОВЫЕ КИСЛОТЫ, соединения, состоящие из остатков фосфорной кислоты, пуриновых и пиримидиновых оснований и углевода. Входят в качестве простетической (небелковой) группы в состав т. н. нуклео протеидов (см.), участвуя в построении клеточного … Большая медицинская энциклопедия
НУКЛЕИНОВЫЕ КИСЛОТЫ — НУКЛЕИНОВЫЕ КИСЛОТЫ, химические макромолекулы, присутствующие во всех живых организмах и в вирусах. Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая) хранит ГЕНЕТИЧЕСКИЙ КОД, который является системой записи наследственной… … Научно-технический энциклопедический словарь
нуклеиновые кислоты — – высокомолекулярные соединения, мономерами которых служат нуклеотиды … Краткий словарь биохимических терминов
нуклеиновые кислоты — (полинуклеотиды), высокомолекулярные органические соединения, образованные остатками нуклеотидов. В зависимости от того, какой углевод входит в состав нуклеиновой кислоты дезоксирибоза или рибоза, различают дезоксирибонуклеиновую (ДНК) и… … Энциклопедический словарь
НУКЛЕИНОВЫЕ КИСЛОТЫ — биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого… … Энциклопедия Кольера
Нуклеиновые кислоты — они же полинуклеотиды, они же биополемеры, построенные из большого числа остатков нуклеотидов; постоянная и необходимая составная часть всех живых систем, которым принадлежит ведущая роль в биосинтезе белка и передаче наследственных признаков… … Начала современного естествознания
Источник
Возможность использования нуклеиновых кислот как лекарственного средства
Интерес к нуклеиновой кислоте, как лекарственному средству, по протяженности укладывается в столетний период. Публикации об особой способности нуклеиновой кислоты повышать общую сопротивляемость организма стали появляться в 1892 году. Горбачевский в 1883 г., и Морек в 1894 г., использовали нуклеиновую кислоту для лечения волчанки. А. Косеель сообщил, что нуклеиновая кислота обладает выраженным бактерицидным действием, поэтому играет основную роль в борьбе с заразным началом.
Г. Воген в 1894 г., Е. Вард в 1910 г., Б и Ф.Г.Буткевич в 1912 г., успешно лечили легочный и костный туберкулез, впрыскивая под кожу нуклеиново-кислый натрий. Исаев в 1894 г., Милке в 1904., Лейн в 1909 г., Писарев в 1910 г., Абелуа и Бадье в 1910 г., расценивали нуклеиновую кислоту как специфически действующее вещество в процессе сопротивляемости организма против таких вредных бактерий, как холерный вибрион, кишечная и бугорчатая палочки, стафилококк, стрептококк, диплококк, сибирская язва, а также против дифтерии и столбнячного токсинов. С. Штерн заменил ртутное лечение сифилиса лечением нуклеиновой кислотой и достиг у больных полного исчезновения всех проявлений сифилиса.
В последующем, открытие роли ДНК, как главного носителя генетической информации, надолго отвлекло исследователей от дальнейшего исследования нуклеиновых кислот как лекарственных средств. Кроме того, недооценка интенсивности обмена нуклеиновых кислот привела к тому, что длительное время нуклеиновые кислоты и нуклеотиды вообще не рассматривались как незаменимые питательные вещества, или нутриенты. Считалось, что организм способен самостоятельно синтезировать необходимое количество нуклеотидов для физиологических потребностей.
Новые научные данные свидетельствуют о том, что это не совсем корректно. В ряде случаев, при интенсивном росте, стрессе, ограниченном питании потребности организма могут значительно превосходить возможности синтеза нуклеотидов.
Каковы же главные источники нуклеотидов? Их три:
1. Нуклеотиды в составе пищи.
2. Утилизация нуклеотидов, высвобождаемых в процессах внутриклеточного метаболизма.
3. Синтез необходимых нуклеотидов из аминокислот и углеводов.
После долгого перерыва вновь началось исследование возможности использования экзогенной ДНК для лечения различных патологий. Так, еще в 1959 году Каназир с сотрудниками опубликовали работу по увеличению выживаемости облученных крыс при введении им изологичной натриевой соли ДНК, полученной из селезенки и печени. При этом выживаемость облученных животных возрастала от 2,6% в контроле до 30-40% в опытной группе.
Таким образом, стимуляция ради стимуляции исключитель- нд вредна. Какой выход из этого тупика? Можно ли поддержать иммунную систему на протяжении всей жизни? Ведь не секрет, что большинство заболеваний имеет инфекционную природу. Даже синдром хронической усталости является вирусным заболеванием.
Нуклеиновые кислоты настолько ценный материал, что все клетки моментально стараются захватить части ДНК или РНК, появляющиеся после распада отживших клеток. Захватывают, и вставляют в свою структуру даже без разбора на составные части. Этот механизм хорошо исследован на бактериях, которые обмениваются генетической информацией с помощью выделенных фрагментов ДНК и РНК.
Высокая, но все еще недостаточная эффективность существующих схем лечения влечет за собой необходимость поиска альтернативных технологий, способных восстанавливать функцию миокарда, таких, например, как использование стволовых клеток. Перспективным представляется также разработка препаратов блокирующих процессы программируемой гибели клеток сердечной мышцы.
Высокий метаболизм клеток сердца делает их чрезвычайно уязвимыми при ишемии, в условиях дефицита энергетических и пластических субстратов. В моделях на животных было показано, что ишемия приводит к уменьшению содержания в сердечной мышце нуклеиновых кислот. Аналогичный дисбаланс нуклеотидов при ишемии отмечается в субэндокардиальных слоях человеческого сердца. Подтверждением тому является исследование Ludith L. соавт., которые изучили содержание нуклеотидов в биопсийных материалах, полученных во время операций на открытом сердце у пациентов, страдающих ишемической болезнью сердца. Исследователи обнаружили, что содержание нуклеиновых кислот в глубоких слоях миокарда было снижено на 20%. Они предположили, что восстановление баланса нуклеотидов с использованием препаратов ДНК и нуклеиновых кислот может оказать защитное влияние на клетки сердца и препятствовать развитию апоптоза.
Эта гипотеза была подтверждена японскими исследователями Satoh К. и соавт. в 1993 году в эксперименте на собаках.
В опытах было показано значительное улучшение сократительной способности сердечной мышцы животных в условиях после внутривенного введения «коктейля» из нуклеиновых кислот. В экспериментах на животных препараты на основе натриевой соли ДНК показали эффективность при аритмиях, возникающих при восстановлении кровотока после ишемии.
Проведенные клинические испытания с препаратами на основе натриевой соли ДНК показали, что препараты способны улучшать клиническое состояние, уменьшать частоту, продолжительность и интенсивность приступов стенокардии, улучшать сократительную способность сердца, увеличивать переносимость физических нагрузок у пациентов, страдающих ишемической болезнью сердца. Несмотря на то, что в эти исследования было включено относительно небольшое количество пациентов, а многие из выявленных различий не имеют статической значимости, полученные данные позволяют предполагать, что исследование препаратов ДНК является перспективным направлением в кардиологии и требует проведения более масштабных клинических исследований.
Старение вызывается вырождением клеток. Наш организм построен из миллионов клеток, каждая из которых живет около двух лет или меньше. Но, прежде чем погибнуть, клетка воспроизводит себя. Почему мы не выглядим так же, как десять лет назад? Причина в том, что при каждом успешном воспроизводстве клетка претерпевает определенное изменение, в сущности, вырождение. Так что, по мере того, как наши клетки меняются или вырождаются, мы стареем.
Доктор Фрэнк рекомендует диету, согласно которой морепродукты едятся семь раз в неделю, с двумя стаканами снятого молока, стаканом фруктового или овощного сока и четырьмя стаканами воды ежедневно. Уже после 2 месяцев дополнительного приема ДНК-РНК и диеты доктор Фрэнк обнаружил, что у пациентов появилось больше энергии, как свидетельство, значительно сократилось количество сладок и морщин, и кожа выглядела более здоровой, розовой и помолодевшей.
Однако важно заметить, что СОД быстро теряет активность при отсутствии таких важных минеральных веществ как цинк, медь и марганец. Дегидроэпиандростерон (ДГЭА), натуральный гормон, вырабатываемый надпочечниками, сегодня тоже стал применяться против старения, так как одним из его свойств является способность «снижать возбуждение» в процессах в организме и, таким образом, замедлять образование способствующих старению жиров, гормонов и кислот.
Область применения нуклеотидов в гастроэнтерологии охватывает широкий спектр заболеваний, которые объединены общими патогенетическими звеньями: воспаление, когда имеется дефицит потребления клеток иммунной системы; дефекты эпителия, когда требуется репарация поврежденных тканей; гормональный дисбаланс и интоксикационный синдром вследствие различных поражений печени, когда требуется пластический материал для восстановления клеток печени и их синтетической функции.
Адекватное питание у тяжелых больных призвано решать следующие задачи:
• Поддержание структуры и функции клеток кишечника (энтероцитов)
• Восстановление барьерной и иммунной функции кишки
• Снижение возможности проникновения патогенных бактерий и токсинов в кровь.
Использование питания, обогащенного нуклеотидами, показано при следующих состояниях:
• Ожоги, травмы, большие операции
• Трансплантация костного мозга
• Инфекции/сепсис
• Воспалительные заболевания кишки
• Некротизирующий энтероколит
• Синдром короткой кишки
• Повреждение слизистой оболочки при критическом состоянии, а также при лучевой и химиотерапии
• Дисфункция иммунной системы, связанная с критическим состоянием, трансплантацией костного мозга.
Так, при использовании иммунопитания у больных с указанными заболеваниями наблюдалось:
• Значительное (в 2 раза) снижение частоты инфекционных осложнений
• Снижение продолжительности госпитализации, в среднем, на 3,86 дня
• Снижение летальности на 30%.
Таким образом, к настоящему времени накоплено большое количество данных, свидетельствующих об эффективности использования фрагментированной ДНК в качестве диетического компонента при самой разнообразной патологии. Имеются доказательства пользы от использования фрагментированной ДНК в качестве стимулятора гемопоэза и иммуномодулятора у пациентов с лучевой болезнью, а также у ослабленных больных. Использование фрагментированной ДНК способствует восстановлению барьерной и иммунной функции кишечника у пациентов, находящихся в критическом состоянии, что позволяет значительно снизить смертность у крайне тяжелых пациентов. Перспективным направлением является использование фрагментированной ДНК в гастроэнтерологии и кардиологии, что диктует необходимость проведения более крупных исследований в этих областях. Мечта о сохранении молодости не оставляла человечество с давних времен. Возможно, что нуклеиновые кислоты окажутся одним из таких «чудо-средств», способных замедлить процессы старения человеческого организма.
Источник
Нуклеиновые кислоты
Что такое жизнь? – вопрос, который неоднократно задает себе каждый человек. На это можно ответить по-разному и один из ответов может звучать так: жизнь — это способ существования белковых тел. А главные составляющие последних – нуклеиновые кислоты. Нуклеиновые кислоты – важнейшие биополимеры, которые содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций — активно поддерживают и стимулируют процессы синтеза белковых веществ в организме, что необходимо для обновления клеточных структур, составляющих основу всех тканей и органов. Актуальность данного процесса нельзя переоценить при терапии для людей, страдающих хроническими заболеваниями, а также при реабилитации больных после хирургических операций, особенно на мягких тканях. Используют нуклеиновые кислоты и для снижения скорости старения клеток и тканей, что улучшает общеоздоравливающее воздействие при комплексной терапии, особенно в возрасте после 45-50 лет.
Существует два типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. Основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах.
Что же касается РНК, то по выполняемым ими функциям различают информационные РНК, в которых записана информация о первичной структуре белка; рибосомные РНК — входят в состав рибосом; транспортные РНК — обеспечивают доставку аминокислот к месту синтеза белка.
Минимальные информационные фрагменты нуклеиновых кислот — нуклеотиды, состоящие из остатков азотистого основания, пентозы и фосфорной кислоты. Нуклеиновые кислоты играют важную структурную роль в клетке, являются компонентами рибосом, митохондрий и других внутриклеточных структур.
Интерес к нуклеиновым кислотам, как средству, используемому при различных патологических состояниях, появился более ста лет назад. И.Горбачевский (1883) и М. Морек (1894) использовали нуклеиновые кислоты с лечебной целью при волчанке. Позднее А. Косеель сообщил, что нуклеиновые кислоты обладают выраженным бактерицидным действием. Начиная с конца 19 века некоторые российские и зарубежные исследователи, еще задолго до открытия антибиотиков, используют нуклеиновые кислоты для борьбы с такими возбудителями инфекционных заболеваний, как холерный вибрион, кишечная и бугорчатая палочки, стафилококк, стрептококк, диплококк и др.
Полученные данные в 70-х годах прошлого столетия показывают эффективность введения нуклеиновых кислот в организм человека: их доставка к клетке происходила без разрушения. Активно размножающиеся ткани (костный мозг, эпителий тонкого кишечника, селезенка) интенсивно поглощали ДНК, а при стрессовом воздействии клетки и ткани органов активно захватывали ДНК.
Достаточно долгое время считалось, что организм способен самостоятельно синтезировать необходимое количество нуклеиновые кислоты. Новые научные данные свидетельствуют о том, что это не совсем корректно. В ряде случаев, при интенсивном росте, стрессе, ограниченном питании потребности организма могут значительно превосходить возможности синтеза нуклеиновых кислот. В этом случае иммунитет человека снижается. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности.
Борьба за иммунитет стала первым, но не единственным направлением по использованию нуклеиновых кислот в клинической практике. Было установлено, что они являются важным компонентом интегрального иммунологического гомеостаза организма. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности. То есть, можно сказать, что нуклеиновые кислоты обладают «многозадачностью».
Наиболее чувствительны к дефициту нуклеиновых кислот быстро делящиеся клетки — эпителий, клетки кишечника, печени и лимфоидная ткань, отвечающая за иммунитет и детоксикацию. Процессы деления клетки со временем сопровождаются постепенным укорачиванием ее ДНК, что приводит к разрушению клетки и возникновению патологических процессов во всем организме. Именно укорачивание ДНК лежит в основе теории старения. А поступающие в организм фрагменты нуклеиновых кислот (ДНК) способствуют замедлению уменьшения структуры ДНК. Это позволяет предотвратить либо замедлить патологические процессы. Происходит обновление старых и восстановление поврежденных клеток, качественно повышаются регенеративные способности тканей. Результат сказывается на состоянии внутренних органов и систем, их функционирование.
Существует несколько типов препаратов на основе нуклеиновых кислот: препараты микробного происхождения, препараты животного происхождения, синтетические препараты.
Натуральный комплекс « Артемия Голд » — это источник нуклеиновых кислот (ДНК, РНК) и дополнительный источник йода из икры (яиц) рачка артемия (Artemia sp.).
Бесспорно, что организм является саморегулирующей системой. Однако в каждой системе может произойти сбой. Именно в этот момент важно, чтобы организм получил именно те вещества, которые смогут компенсировать потери и наладить работу системы. По мнению исследователей из НИИ эпидемиологии и микробиологии СО РАМН э тими веществами могут быть препараты нуклеиновых кислот различного происхождения, которые являются перспективными терапевтическими и иммуномодулирующими агентами.
— Агаджанян Н. А., Баевский Р. М., Берсенева А. П. Проблемы адаптации и учение о здоровье. — М.: Изд-во РУДН, 2006. — 284 с.
— Аппель Б., Бенеке Б.И. Бененсон Я. Нуклеиновые кислоты. От А до Я. – Москва: Изд-во: Бином. Лаборатория знаний, 2013
— Бенджамин С. Фрэнк. Лечения старения и дегенеративных заболеваний нуклеиновой кислотой. — Нью-Йорк, Психологическая библиотека, 1974 г.
— Коровина Н.А., Захарова И.Н., Малова Н.Е., Лыкина Е.В. Роль нуклеотидов в питании ребенка первого года жизни. Педиатрия. 2004, — Т.83. — № 5, С.65-68.
— Мамонова Л.Г. Значение нуклеотидов в питании детей раннего возраста. Вопросы современной педиатрии. 2007, 6 (6), С.113-116.
— Тутельян В.А., Суханов Б.Н., Австриевских А.Н., Позняковский В.М. Биологически активные добавки в питании человека (оценка качества и безопасности, эффективность, характеристика, применение в профилактической и клинической медицине). – Томск: Изд-во НТЛ, 1999. – 296 с.
— Федянина Л.Н., Беседнова Н.Н., Эпштейн Л.М., Каленик Т.К., Блинов Ю.Г. Лекарственные препараты и биологически активные добавки к пище на основе нуклеиновых кислот различного происхождения. – Владивосток: Тихоокеанский медицинский журнал, 2007, №4. – С. 9-12.
Источник
|