Нули знаменателя и нули числителя что это
Теория: Метод интервалов и простейшие рациональные неравенства
Выберите верные знаки и обозначения точек на числовой прямой при решении неравенства методом интервалов:
Найдем корни числителя \(\displaystyle x-1 \) и знаменателя \(\displaystyle x-3 <\small : >\)
Поскольку знак неравенства нестрогий, то
Так как \(\displaystyle x=1\) обращает в ноль числитель и не обращает в ноль знаменатель, то она обозначается закрашенной. Поскольку \(\displaystyle x=3 \) обращает в ноль знаменатель, то она обозначается выколотой:
Получили три интервала:
Определим знак функции \(\displaystyle f(x)=\frac
Пишем знак плюс в интервале \(\displaystyle (-\infty;1)<\small :>\)
\(\displaystyle f(2)=\frac<2-1> <2-3>На интервале \(\displaystyle (3;+\infty) \) функция \(\displaystyle f(x) \) положительна
Пишем знак плюс в интервале \(\displaystyle (3;+\infty)<\small :>\)
Метод интервалов, примеры, решения.
Метод интервалов (или как его еще иногда называют метод промежутков) – это универсальный метод решения неравенств. Он подходит для решения разнообразных неравенств, однако наиболее удобен в решении рациональных неравенств с одной переменной. Поэтому в школьном курсе алгебры метод интервалов вплотную привязывают именно к рациональным неравенствам, а решению других неравенств с его помощью практически не уделяют внимания.
В этой статье мы детально разберем метод интервалов и затронем все тонкости решения неравенств с одной переменной с его помощью. Начнем с того, что приведем алгоритм решения неравенств методом интервалов. Дальше поясним, на каких теоретических аспектах он базируется, и разберем шаги алгоритма, в частности, подробно остановимся на определении знаков на интервалах. После этого перейдем к практике и покажем решения нескольких типовых примеров. А в заключение рассмотрим метод интервалов в общем виде (то есть, без привязки к рациональным неравенствам), другими словами, обобщенный метод интервалов.
Навигация по странице.
Алгоритм
Чтобы сделать дальнейший разговор предметным, сразу запишем алгоритм решения неравенств указанного выше вида методом интервалов, а потом разберемся, что да как да почему. Итак, по методу интервалов:
На чем базируется метод?
Так мы плавно подошли к вопросу определения знаков на промежутках, но не будем перескакивать через первый шаг метода интервалов, подразумевающий нахождение нулей числителя и знаменателя.
Как находить нули числителя и знаменателя?
С нахождением нулей числителя и знаменателя дроби указанного в первом пункте вида обычно не возникает никаких проблем. Для этого выражения из числителя и знаменателя приравниваются к нулю, и решаются полученные уравнения. Принцип решения уравнений такого вида подробно изложен в статье решение уравнений методом разложения на множители. Здесь лишь ограничимся примером.
Для нахождения нулей числителя и знаменателя в общем случае, когда в левой части неравенства дробь, но не обязательно рациональная, также числитель и знаменатель приравниваются к нулю, и решаются соответствующие уравнения.
Как определять знаки на интервалах?
Самый надежный способ определения знака выражения из левой части неравенства на каждом промежутке состоит в вычислении значения этого выражения в какой-либо одной точке из каждого промежутка. При этом искомый знак на промежутке совпадает со знаком значения выражения в любой точке этого промежутка. Поясним это на примере.
Существует и другой подход к определению знаков, состоящий в нахождении знака на одном из интервалов и его сохранении или изменении при переходе к соседнему интервалу через нуль. Нужно придерживаться следующего правила. При переходе через нуль числителя, но не знаменателя, или через нуль знаменателя, но не числителя, знак изменяется, если степень выражения, дающего этот нуль, нечетная, и не изменяется, если четная. А при переходе через точку, являющуюся одновременно и нулем числителя, и нулем знаменателя, знак изменяется, если сумма степеней выражений, дающих этот нуль, нечетная, и не изменяется, если четная.
Кстати, если выражение в правой части неравенства имеет вид, указанный в начале первого пункта этой статьи, то на крайнем правом промежутке будет знак плюс.
Чтобы все стало понятно, рассмотрим пример.
А дальше наступает момент определения знаков на промежутках. Как мы заметили перед этим примером, на крайнем правом промежутке (4, +∞) будет знак +:
Понятно, что применение рассмотренного метода особенно оправдано, когда вычисление значения выражения связано с большим объемом работы. К примеру, вычислите-ка значение выражения в любой точке интервала
.
Будем считать, что с нахождением знаков на промежутках разобрались.
Примеры решения неравенств методом интервалов
Теперь можно собрать воедино всю представленную информацию, достаточную для решения неравенств методом интервалов, и разобрать решения нескольких примеров.
Нули знаменателя и нули числителя что это
Покажем, как работает метод интервалов на нескольких примерах.
а) Раскладывая числитель и знаменатель дроби на множители, получаем
Точки, в которых числитель обращается в ноль (нули числителя), обозначаем на числовой прямой маленькими закрашенными кружочками – они будут включены в ответ, так как в них неравенство выполняется. Точки, в которых знаменатель обращается в ноль (нули знаменателя), обозначаем на числовой прямой маленькими пустыми кружочками (такие точки называются выколотыми) – они не будут включены в ответ, так как в них левая часть не определена (рис. 2).
Отмеченные точки делят числовую прямую на шесть промежутков, на каждом из которых знак левой части неравенства (1) постоянен. Чтобы определить знаки, сначала определим знак левой части (1) на крайнем правом промежутке `(4; +oo)`. Для этого можно подставить какое-либо значение переменной `x` из этого промежутка в (1), например, `x=1000`. Несложно видеть, что при этом каждый из множителей в числителе и знаменателе положителен, поэтому дробь больше нуля, и на промежутке `(4; +oo)` можем поставить знак `«+»`.
Теперь переместимся в соседний промежуток `(1; 4)`. Заметим, что при переходе через точку `x=4` только один из множителей в (1) меняет знак (это `(x-4)`), а все остальные знаки остаются неизменными, поэтому дробь меняет знак, и на промежутке `(1; 4)` ставим знак `«-»`. При переходе к каждому следующему промежутку ровно один множитель в числителе или знаменателе (1) меняет знак, поэтому меняет знак и вся дробь, то есть знаки чередуются. Получаем такую расстановку знаков:
б) Здесь левая часть уже разложена на множители, и нам остаётся лишь расставить знаки. Для этого отмечаем на числовой прямой точки `x=3`, `x=4`, `x=5`, `x=6` (все они невыколотые и являются решениями неравенства) и приступаем к расстановке знаков. Принципиальное отличие этого примера от предыдущего в том, что некоторые из множителей возводятся в степень. На что это влияет? Если показатель степени чётный, то соответствующий множитель не меняет знак при переходе через ту точку, в которой он обращается в ноль (например, `(x-3)^2>=0` при любых `x`, поэтому с обеих сторон от точки `x=3` выражение `(x-3)^2` положительно). Если показатель степени нечётный, то множитель меняет знак при переходе через ту точку, в которой он равен нулю. В итоге получаем следующую расстановку знаков:
Не забываем также включить в ответ все точки, отмеченные на прямой жирными кружочками.
в) Переносим `1/3` влево и приводим дроби к общему знаменателю: `(3-x)/(3x) (например, `-3
г) Находим нули числителя и знаменателя. Получаем:
1. `x^2-x-2=0 iff x=2` или `x=-1` (поэтому `x^2-x-2=(x-2)(x+1)`);
2. `2x-3-x^2-x^2=0 iff O/` (т. к. дискриминант отрицателен). Следовательно, выражение `-x^2+2x-3` отрицательно при всех `x` (графиком функции `f(x)=-x^2+2x-3` является парабола с ветвями вниз, при этом она не пересекает ось абсцисс, так как у уравнения `f(x)=0` нет корней; значит, эта парабола целиком расположена ниже оси абсцисс, то есть `f(x) 0` при всех `x`.
4. `2x^2-x-6=0 iff x=2` или `x=-3/2`. Значит,
Исходное неравенство равносильно следующему
д) Прежде всего, необходимо привести дроби к общему знаменателю. Чтобы сделать это, раскладываем знаменатели дробей на множители.
Заметим, что `x=-1` является корнем каждого из знаменателей в левой части неравенства. Выполняя деление на `(x+1)`, получаем следующие разложения на множители:
Преобразуем исходное неравенство:
$$\left\<\begin
Заменим множитель `x^8-256=x^8-2^8` на `x^2-x^2`;
множитель `|3x+4|-|2x-7|` на `(3x+4)^2-(2x-7)^2`;
множитель `243-x^5=3^5-x^5` на `3-x`. Получаем
Каждую из скобок в числителе раскладываем на множители по формуле разности квадратов.
Решение неравенств методом интервалов
Цели:
Мы будем рассматривать неравенства, правая часть которых равна нулю, а левая часть представлена в виде произведения или частного функций.
Идея метода: Знак произведения или частного определяется знаком сомножителей.
Линейная функция с ненулевым угловым коэффициентом меняет знак при переходе через нуль функции, причём справа от нуля знак функции совпадает со знаком углового коэффициента.
Квадратный трёхчлен с D>0 при переходе через каждый нуль функции меняет свой знак, причём правее большего корня знак квадратного трёхчлена совпадает со знаком его старшего коэффициента. [1]
Эти соображения приводят к следующей схеме решения неравенства:
Пример 1:[1]
На самом правом из них знак каждого сомножителя совпадает со знаком его старшего коэффициента:
Следовательно, дробь на этом промежутке тоже отрицательна.
В рассмотренном примере 1, знаки в промежутках знакопостоянства функции чередуются. Однако делать обобщение, что так будет происходить всегда, разумеется, не следует.
Пример 2:
-2 – нуль второй кратности
Это поможет понять следующая геометрическая картинка (Рис.6):
Вывод: при переходе через нуль чётной кратности, знак не меняется.
Решить по вариантам, с последующим обсуждением у доски.
I вариант
Пример 3:
Ответ:
II вариант
Пример 4:
Ответ:
Применение метода интервалов не ограничивается решением рациональных неравенств.
Универсальность метода основана на достаточно наглядном свойстве непрерывных функций: «Если на интервале (a;b) функция f(x) непрерывна и не обращается в нуль, то на этом интервале она сохраняет знак».
Пример 5: [1] ,
Будем решать это неравенство по той же схеме, но не на всей оси, а на области определения логарифмической функции, т.е. на промежутке (*):
Следовательно на этом промежутке левая часть неравенства отрицательна
Ответ: .
Пример 6:
Квадратный трёхчлен в числителе не имеет корней и не меняет свой знак. Его знак совпадает со знаком старшего коэффициента, т.е. «+».
Ответ:.
Пример 7: ОДЗ:
Приведём неравенство к такому виду, чтобы в правой части был «0»:
;
;
;
Ответ:.
Пример 8:
ОДЗ:
, но ОДЗ удовлетворяет только
Ответ:.
Задание на дом: (Решение предоставлено в Приложении1)
Задания для факультативный занятий предоставлены в Приложении2.
Вывод: Как известно, линейная, квадратичная, степенная, показательная, логарифмическая и тригонометрические функции, а так же их композиции и функции, получаемые из них с помощью арифметических действий, непрерывны в своей области определения. Поэтому метод интервалов можно применять при решении практически всех неравенств школьного курса. Метод интервалов позволяет представить множество решений неравенства в виде объединения промежутков, границы которых либо корни соответствующего уравнения, либо граничные точки области определения.
Список литературы:
[1] «Метод интервалов» //Журнал «Квант» No12, 1985 г.
Метод интервалов, примеры, решения
Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.
Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.
Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.
Алгоритм
Приведем несколько примеров таких неравенств:
Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:
Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.
При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.
Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.
Научные основы метода промежутков
Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.
Нахождение нулей числителя и знаменателя
Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.
0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.
В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.
Определение знаков на интервалах
Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.
Рассмотрим это утверждение на примере.
Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.
Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».
Теперь обратимся к примерам.
Нули знаменателя отметим пустыми точками.
Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.
Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения
Будем считать, что с правилами определения знаков для промежутков мы разобрались. Идем дальше.