какая информация добавляется в ходе инкапсуляции на 3 м уровне модели osi
Эталонная модель OSI
Обзор
В течение двух последних десятилетий наблюдался значительный рост глобальных сетей. Убедившись, что использование сетевых технологий сулит существенную экономию денежных средств и повышение производительности труда, крупные организации стали уделять особое внимание этому направлению. Новые технологии и продукты внедрялись сразу после их появления, и поэтому многие сети были сформированы с использованием различных аппаратных и программных средств. Вследствие этого многие сети оказались несовместимыми и стало сложным организовывать обмен информацией между компьютерами, использующими различные сетевые спецификации. К середине 80-х годов компании начали испытывать трудности от развития сетей. Становилось всё сложнее объединять сети, использующие разные спецификации и исполнения. Эти компании осознали, что пора прекращать закрытое использование сетевых систем – систем, которые отдельно развиваются, используются и управляются. Закрытость системы значит, что только одна компания или маленькая группа компаний контролирует всё использование технологии. Открытость системы означает, что она доступна для использования любому желающему. Для решения проблемы взаимодействия различных сетей Международная Организация Стандартизации приступила к поискам схемы межсетевого взаимодействия. Результатом исследований стало создание модели OSI, которая должна способствовать созданию совместимых сетевых технологий. Модель OSI снабдила разработчиков набором стандартов, обеспечивающих совместимость и способность соединения различных типов сетей разработанных разными компаниями по всему миру. Хотя существуют и другие модели, большинство разработчиков сетей сегодня связывают свои продукты с моделью OSI, особенно если они хотят обучить клиентов использовать свою продукцию. Модель OSI признана лучшим инструментом для изучения тем, связанных с передачей и приёмом данных в сети. Модель OSI состоит из 7-ми уровней, каждый из которых соответствует определённой сетевой функции. Модель OSI определяет сетевые функции, соответствующие каждому уровню. Что ещё более важно, модель OSI способствует пониманию, как информация путешествует по сети. Если смотреть глубже, модель OSI описывает, как данные путешествуют от одного приложения пользователя, через сетевые коммуникации, к приложению пользователя, расположенному на другом компьютере, даже если подключены к сети разными кабелями.
Описание модели OSI
Эталонная модель OSI — это описательная схема сети; ее стандарты гарантируют высокую совместимость и способность к взаимодействию различных типов сетевых технологий. Кроме того, она иллюстрирует процесс перемещения информации по сетям. Это концептуальная структура, определяющая сетевые функции, реализуемые на каждом ее уровне. Модель OSI описывает, каким образом информация проделывает путь через сетевую среду (например, провода) от одной прикладной программы (например, программы обработки таблиц) к другой прикладной программе, находящейся в другом подключенном к сети компьютере. По мере того, как подлежащая отсылке информация проходит вниз через уровни системы, она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно на «единицы» и «нули». Эталонная модель OSI делит задачу перемещения информации между компьютерами через сетевую среду на семь менее крупных и, следовательно, более легко разрешимых подзадач. Каждая из этих семи подзадач выбрана потому, что она относительно автономна и, следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Такое разделение на уровни называется иерархическим представлением. Каждый уровень соответствует одной из семи подзадач.
Модель OSI упрощает понимание сетевых функций благодаря следующим чертам:
Уровни модели OSI и их функции.
Каждый уровень модели OSI имеет специальные функции, соответствующие программному обеспечению или устройствам.
Уровень 1: Физический уровень
Физический уровень – это самый нижний уровень системы, который отвечает за кодирование передаваемой информации в уровень сигналов, принятый в среде передачи, и обратное декодирование. Здесь же определяются требования к соединениям, разъёмам, электрическому согласованию, заземлению, защите от помех.
Уровень 3: Сетевой уровень
Отвечает за адресацию пакетов и перевод логических имён в физические сетевые адреса(и обратно), а также за выбор маршрута, по которому пакет доставляется по назначению(если в сети имеется несколько маршрутов).
Уровень 4: Транспортный уровень
Сессионный уровень устанавливает, управляет и разрывает связь между двумя хостами. Этот уровень также синхронизирует диалог между представительскими уровнями 2-х хостов и управляет их обменом данных. Он же распознаёт логические имена абонентов, контролирует предоставленные им права доступа.
Уровень 5: Сеансовый уровень
Основная функция, выполняемая на сеансовом уровне, напоминает работу посредника или судьи — управление диалогом между устройствами, называемыми также узлами. Взаимодействие систем, организуемое на этом уровне, может происходить в трех различных режимах: симплексном (simplex), полудуплексном (half-duplex) и полнодуплексном (full-duplex). Сеансовый уровень обычно занимается отделением данных одного приложения от информации другого приложения.
Ниже приведены некоторые протоколы и интерфейсы сеансового уровня:
Уровень 6: Представительский уровень
Представительский уровень, или уровень представления данных, определяет пригодны ли данные, посланные прикладным уровнем одной системы для чтения прикладным уровнем другой системы, если нет – определяет и преобразует формат данных в необходимый. Здесь же выполняется шифрование и дешифрование данных, а при необходимости – сжатие.
Уровень 7: Прикладной уровень
Прикладной уровень наиболее близок к пользователю из всех уровней модели OSI. Этот уровень предоставляет сетевые сервисы пользователю, такие как передача файлов, электронная почта и т.д. Уровень приложений отличается от других тем, что он не предоставляет услуги другим уровням, только приложениям вне модели OSI. Он также управляет остальными шестью уровнями.
Инкапсуляция и деинкапсуляция.
Информация, передаваемая по сети, должна быть подвергнута процессу трансформации как на передающей стороне, так и на принимающей. Процессы трансформации называются инкапсуляция и деинкапсуляция.
Информация, передаваемая по сети, обычно называется данными или пакетами данных. Если один компьютер хочет отправить информацию другому компьютеру, данные для начала должны быть упакованы процессом, называемым инкапсуляция. Инкапсуляция добавляет к данным необходимую информацию протоколов перед передачей по сети. Когда данные переходят с одного уровня модели OSI на другой, каждый уровень добавляет к данным заголовок(или прицеп), перед тем, как отправить ниже, на следующий уровень. Заголовки и контейнеры содержат управляющую информацию для сетевых устройств и получателя, которая гарантирует правильную доставку данных и их интерпретацию.
Рисунок иллюстрирует, как происходит инкапсуляция, методы прохождения данных через уровни модели OSI. В процессе инкапсуляции данные проходят следующие шаги:
Пример: Отправка пакета через службу E-mail.
Инкапсуляция очень похожа на отправку письма через E-mail. Первым делом информация помешается в письмо. Потом Вы приписываете адрес, на который Вы хотите отправить письмо, к контейнеру, содержащему информацию. Затем вы поместите письмо в очередь отправки службы E-mail и пакет начнёт свой путь к месту назначения.
Деинкапсуляция
Когда удалённое устройство принимает последовательность битов, физический уровень передаёт биты информации канальному уровню для обработки. Канальный уровень выполняет следующие шаги:
Пример: Получение письма.
Процесс деинкапсуляции схож с чтением адреса на письме, чтобы определить, Вам ли оно предназначено, и затем читаете содержимое, если да.
Одноранговая модель взаимодействия
Сетевые протоколы
Протоколы представляют собой набор стандартов и правил, согласно которым данные передаются по сети. Сетевые протоколы – это наборы правил и стандартов, в соответствии с которыми работают сетевые сервисы. Существует множество различных протоколов с своими функциями и задачами, соответствующих разным уровням модели OSI. Ниже приведено несколько распространённых протоколов:
Сетевые модели. Инкапсуляция.
Инкапсуляция – это процесс передачи данных с верхнего уровня приложений вниз (по стеку протоколов) к физическому уровню, чтобы быть переданными по сетевой физической среде (витая пара, оптическое волокно, Wi-Fi, и др.). Причём на каждом уровне различные протоколы добавляют к передающимся данным свою информацию.
Напомню, что сетевая модель OSI состоит из 7 уровней (уровень приложений, уровень представления, сеансовый, транспортный, сетевой, канальный и физический). Все сетевые устройства работают согласно модели OSI, только некоторые используют все 7 уровней, а другие меньше. Это позволяет обрабатывать поступающие данные в несколько раз быстрее.
Например, Ваш компьютер использует все 7 уровней, маршрутизатор – 3 нижних уровня, коммутатор – только 2 нижних уровня.
На рисунке Вы видите взаимодействие двух компьютеров, между которыми находится маршрутизатор. Компьютерами PC1 и PC2 могут быть как домашние компьютеры, так и сервера. Маршрутизатор, как и говорилось выше, работает только на трех уровнях модели, их (трех уровней) достаточно, чтобы проложить маршрут в любой сети.
Теперь перейдем к самому процессу инкапсуляции, декапсуляции.
Эти данные опускаются с уровня приложений, на уровень представления данных.
На этом уровне Ваш компьютер преобразует строку введенного текста (адреса) в формат удобный для передачи далее на нижний уровень.
Сетевой уровень, получая каждый сегмент, разделяет его на еще более маленькие части и к каждой части добавляет свой заголовок. В заголовке сетевого уровня указываются логические сетевые адреса отправителя (Ваш компьютер) и получателя (Сервер).
Логические сетевые адреса – это всем известные IP-адреса, еще наверное непонятно что обозначают цифры и точки в них, но вскоре, этот пробел в знаниях заполнит соответствующая информация 😉
Эти маленькие кусочки данных уже с несколькими заголовками (на верхних уровнях тоже добавляются специфичные заголовки) на сетевом уровне называются пакетами, которые в свою очередь передаются на канальный уровень.
На канальном уровне пакеты разделяются на еще более маленькие кусочки данных, и к ним помимо опять добавляемого заголовка, только уже канального уровня, добавляется еще и трейлер. На этом уровне в заголовках содержатся физические адреса устройств – передающего и для кого они предназначаются, а в трейлере находится вычисленная контрольная сумма, некий код (информация), который используется для определения целостности данных.
Физические адреса устройств – это MAC-адреса.
Эти очень маленькие кусочки данных именуются кадрами или фреймами (одно и тоже). Далее кадры передаются на физический уровень.
Сетевая карта сервера принимает биты (на физическом уровне) и преобразует их в кадры (для канального уровня). Канальный уровень в обратной последовательности должен преобразовать кадры в пакеты (для сетевого уровня), только перед преобразованием уровень сначала смотрит на МАС-адрес (физический адрес) получателя, он должен совпадать с MAC-адресом сетевой карты, иначе кадр будет уничтожен. Затем канальный уровень (в случае совпадения MAC-адреса) высчитывает сумму полученных данных и сравнивает полученное значение со значением трейлера. Напомню, что значение трейлера высчитывалось на Вашем компьютере, а теперь оно, после передачи по проводам, сравнивается с полученным значением на сервере и если они совпадают, кадр преобразуется в пакет. Если проверочный код целостности данных рознится – кадр незамедлительно уничтожается.
На сетевом уровне происходит проверка логического адреса (IP-адреса), в случае успешной проверки пакет преобразуется в сегмент, попадая на транспортный уровень.
На транспортном уровне проверяется информация из заголовка, что это за сегмент, какой используется протокол, для какого логического порта предназначается и т.п. Протокол использовался TCP, поэтому назад на Ваш компьютер посылается уведомление о прибытии сегмента. Как говорилось выше (когда данные упаковывали в сегмент) в том случае использовался 80 порт назначения. Т.к. на веб-сервере как раз открыт этот порт, данные передаются дальше на верхний уровень.
На верхних уровнях запрос (введенный адрес сайта) обрабатывается веб-сервером (проверяется, доступна-ли запрашиваемая веб-страничка).
Этот процесс преобразования сигналов из провода в данные называется процессом декапсуляции.
После того, как страница будет найдена на сервере, она (текст, изображения, музыка) преобразуется в цифровой код, удобный для инкапсулирования. Большой объём данных делится на части и поступает ниже на уровень – транспортный. Там кусочек данных преобразуется в сегмент, только порт назначения теперь будет тот, с которого вы посылали (вспоминайте, 1223). Сегмент преобразуется в пакет, в заголовке которого содержится IP-адрес вашего компьютера и переходит ниже. На канальном уровне пакет в свою очередь преобразуется в кадры и добавляется заголовок и трейлер. В заголовок помещается МАС-адрес назначения (в данном случае это будет адрес шлюза), а в трейлер проверочный код на целостность данных. Далее сетевая карта посылает кадры в виде сигналов по кабелю по направлению к Вашему компьютеру.
Так и происходит сетевой обмен данными, инкапсуляция и декапсуляция.
Вам обязательно надо запомнить, что те кусочки данных (вместе с заголовками), которые переходят с уровня на уровень (с добавлением заголовков или наоборот) называются Protocol Data Unit или PDU. Если перевести литературно на русский язык, то получается фрагмент данных на каждом уровне модели. В первой части CCNA попадаются вопросы связанные с PDU, так что обязательно запомните что это такое 😉
OSI Model
Содержание
Сетевая модель OSI [ править ]
Общая характеристика модели [ править ]
OSI состоит из двух основных частей:
Концепция семиуровневой модели была описана в работе Чарльза Бахмана. Данная модель подразделяет коммуникационную систему на уровни абстракции (англ. «abstraction layers»). В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень:
Каждый из семи уровней характеризуется типом данных (PDU, сокращение от англ. protocol data units), которым данный уровень оперирует и функционалом, который он предоставляет слою, находящемуся выше него. Предполагается, что пользовательские приложения обращаются только к самому верхнему (прикладному) уровню, однако на практике это выполняется далеко не всегда.
Описание уровней модели OSI [ править ]
Уровень | Функции | PDU | Примеры |
7. Прикладной | Некоторое высокоуровневое API | Данные | HTTP, FTP |
6. Представительский | Представление данных между сетевым сервисом и приложением | Данные | ASCII, EBCDIC, JPEG |
5. Сеансовый | Управление сеансами: продолжительный обмен информацией в виде множества передач между нодами | Данные | RPC, PAP |
4. Транспортный | Надёжная передача сегментов между двумя нодами в сети | Сегменты/Датаграммы | TCP, UDP |
3. Сетевой | Структуризация и управление множеством нод в сети | Пакеты | IPv4, IPv6 |
2. Канальный | Надёжная передача датафреймов между двумя нодами соединённых физическим уровнем | Фреймы | PPP, IEEE 802.2, Ethernet |
1. Физический | Передача и приём потока байтов через физическое устройство | Биты | USB, витая пара |
Прикладной уровень (Application layer) [ править ]
Самый верхний уровень модели, предоставляет набор интерфейсов для взаимодействия пользовательских процессов с сетью. Единицу информации, которой оперируют три верхних уровня модели OSI, принято называть сообщение (англ. message).
Прикладной уровень выполняет следующие функции:
К числу наиболее распространенных протоколов верхних трех уровней относятся:
Уровень представления (Presentation layer) [ править ]
Уровень представления занимается представлением данных, передаваемых прикладными процессами в нужной форме. Данные, полученные от приложений с прикладного уровня, на уровне представления преобразуются в формат подходящий для передачи их по сети, а полученные по сети данные преобразуются в формат приложений. Также кроме форматов и представления данных, данный уровень занимается конвертацией структур данных, используемых различными приложениями. Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями.
Как и прикладной уровень, уровень представления оперирует напрямую сообщениями. Уровень представления выполняет следующие основные функции:
Примеры протоколов данного уровня:
Сеансовый уровень (Session layer) [ править ]
Сеансовый уровень контролирует структуру проведения сеансов связи между пользователями. Он занимается установкой, поддержанием и прерыванием сеансов, фиксирует, какая из сторон является активной в данный момент, осуществляет синхронизацию обмена информацией между пользователями, что также позволяет устанавливать контрольные точки.
На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:
Как 2 уровня над ним, сеансовый уровень использует сообщения в качестве PDU.
Примеры протоколов сеансового уровня:
Транспортный уровень (Transport layer) [ править ]
Транспортный уровень предназначен для передачи надежной последовательностей данных произвольной длины через коммуникационную сеть от отправителя к получателю. Уровень надежности может варьироваться в зависимости от класса протокола транспортного уровня. Так например UDP гарантирует только целостность данных в рамках одной датаграммы и не исключает возможности потери/дублирования пакета или нарушения порядка получения данных; TCP обеспечивает передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот, склеивая фрагменты в один пакет.
Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов. В функции транспортного уровня входят:
Транспортный уровень использует сегменты или датаграммы в качестве основного типа данных.
Сетевой уровень (Network layer) [ править ]
Сетевой уровень предоставляет функционал для определения пути передачи пакетов данных между клиентами, подключенными к одной коммуникационной сети. На данном уровне решается проблема маршрутизации (выбора оптимального пути передачи данных), трансляцией логических адресов в физические, отслеживанием неполадок в сети.
В рамках сетевого надежность доставки сообщений не гарантируется; сетевой уровень может реализовывать соответствующий функционал, но не обязан это делать. Роль PDU исполняют пакеты (англ. packet).
Сетевой уровень выполняет функции:
Наиболее часто на сетевом уровне используются протоколы:
Канальный уровень (Data link layer) [ править ]
Канальный уровень предназначен для передачи данных между двумя узлами, находящихся в одной локальной сети. Роль PDU исполняют фреймы (англ. frame). Фреймы канального уровня не пересекают границ локальной сети, что позволяет данному уровню сосредоточиться на локальной доставке (фактически межсетевой доставкой занимаются более высокие уровни).
Заголовок фрейма формируется из аппаратных адресов отправителя и получателя, что позволяет однозначно определить устройство, которое отправило данный фрейм и устройство, которому он предназначен. При этом никакая часть адреса не может быть использована, чтобы определить некую логическую/физическую группу к которой принадлежит устройство.
Канальный уровень состоит из двух подуровней: LLC и MAC.
Канальный уровень выполняет функции:
Наиболее часто на канальной уровне используются протоколы:
Физический уровень (Physical layer) [ править ]
Физический уровень описывает способы передачи потока бит через дата линк, соединяющий сетевые устройства. Поток байт может быть сгруппирован в слова и сконвертирован в физический сигнал, который посылается через некоторое устройство.
Здесь специфицируются такие низкоуровневые параметры как частота, амплитуда и модуляция.
Физический уровень выполняет функции:
Наиболее часто на физическом уровне используются протоколы:
Инкапсуляция [ править ]
Физический уровень ответственен за физическую передачу данных. IP предоставляет глобальный способ адресации устройств. TCP добавляет возможность выбора приложения (порт).
Во время инкапсуляции каждый уровень собирает свой собственный PDU, добавляя некоторый заголовок с контрольной информацией к PDU с более высокого уровня.
Пример [ править ]
Предположим мы отправляем веб-страницу клиенту:
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Что такое инкапсуляция данных в сети?
Всякий раз, когда мы отправляем данные из одного узла в другой в компьютерной сети, данные инкапсулируются на стороне отправителя, а деинкапсулируются на стороне получателя. В этой статье мы узнаем, что такое инкапсуляция. Мы также подробно изучим процесс инкапсуляции и деинкапсуляции в моделях OSI и TCP/IP.
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Инкапсуляция данных
Данные инкапсулируются на стороне отправителя, начиная с уровня приложения и заканчивая физическим уровнем. Каждый уровень берет инкапсулированные данные из предыдущего слоя и добавляет некоторую дополнительную информацию для их инкапсуляции и некоторые другие функции с данными. Эти функции могут включать в себя последовательность данных, контроль и обнаружение ошибок, управление потоком, контроль перегрузки, информацию о маршрутизации и так далее.
Деинкапсуляция данных
На рисунке показано, как футер и хедер добавляются и удаляются из данных в процессе инкапсуляции и деинкапсуляции соответственно.
Данные инкапсулируются на каждом уровне на стороне отправителя, а также деинкапсулируются на том же уровне на стороне получателя модели OSI или TCP/IP.
Процесс инкапсуляции (на стороне отправителя)
Шаг 2. Транспортный уровень берет поток данных с верхних уровней и разделяет его на несколько частей. Транспортный уровень инкапсулирует данные, добавляя соответствующий заголовок к каждой части. Эти фрагменты данных теперь называются сегментами данных. Заголовок содержит информацию о последовательности, так что сегменты данных могут быть повторно собраны на стороне получателя.
Шаг 3. Сетевой уровень берет сегменты данных с транспортного уровня и инкапсулирует их, добавляя дополнительный заголовок к сегменту данных. Этот заголовок данных содержит всю информацию о маршрутизации для правильной доставки данных. Здесь инкапсулированные данные называются пакетом данных или дейтаграммой.
Шаг 4: Канальный уровень берет пакет данных или дейтаграмму с сетевого уровня и инкапсулирует ее, добавляя дополнительный заголовок и нижний футер. Заголовок содержит всю информацию о коммутации для правильной доставки данных соответствующим аппаратным компонентам, а футер содержит всю информацию, связанную с обнаружением ошибок и контролем. Здесь инкапсулированные данные называются фреймом данных.
Шаг 5: Физический уровень берет кадры данных с уровня канала передачи данных и инкапсулирует их, преобразовывая их в соответствующие сигналы данных или биты, соответствующие физической среде.
Процесс деинкапсуляции (на стороне получателя)
Шаг 1: Физический уровень принимает инкапсулированные сигналы данных или биты от отправителя и деинкапсулирует их в форме кадра данных, который будет перенаправлен на верхний уровень, то есть на канальный уровень.
Шаг 2: Канальный уровень берет кадры данных с физического уровня. Он деинкапсулирует фреймы данных и проверяет заголовок фрейма, скоммутирован ли фрейм данных на правильное оборудование или нет. Если кадр пришел в неправильное место назначения, он отбрасывается, иначе он проверяет информацию в футере. Если есть какая-либо ошибка в данных, запрашивается повторная передача данных, если нет, то они деинкапсулируются, и пакет данных пересылается на верхний уровень.
Шаг 3. Сетевой уровень принимает пакет данных или дейтаграмму из канального уровня. Он деинкапсулирует пакеты данных и проверяет заголовок пакета, направлен ли пакет в правильное место назначения или нет. Если пакет направляется в неправильный пункт назначения, пакет отбрасывается, если все ок, то он деинкапсулируется, и сегмент данных пересылается на верхний уровень.
Шаг 4: Транспортный уровень берет сегменты данных с сетевого уровня и деинкапсулирует их. Сначала он проверяет заголовок сегмента, а затем повторно собирает сегменты данных для формирования потоков данных, а затем эти потоки данных пересылаются на верхние уровни.
Шаг 5: Уровень приложения, представления и сеанса в модели OSI берет инкапсулированные данные с транспортного уровня, деинкапсулирует их, и данные, относящиеся к конкретному приложению, пересылаются в приложения.
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer