какая модуляция используется в сотовой связи

Как устроена сеть сотовой связи GSM/UMTS

В комментариях к постам про сеть WiMAX (1, 2) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети — сеть радиодоступа (RAN — Radio Access Network) и сеть коммутации или опорную сеть (CN — Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Сеть радиодоступа

Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа — оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть

Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже — её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂

HLR — Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько — они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки — в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири — 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
— может ли абонент совершать исходящие звонки
— может ли абонент отправлять/принимать SMS
— разрешена ли услуга конференц-связи
— ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC/VLR

MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.
какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC — AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте — на радиоинтерфейсе.

GMSC — Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN — Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN — Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC — Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями — назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга — через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC — TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS — Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути — довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки — это не есть базовая станция 🙂 Базовая станция похожа на холодильник — шкафчик с модулями, который стоит в специальном месте. Это специальное место — например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.

Более подробно можно почитать в недавно опубликованной статье про базовые станции.

RNC — Radio Network Controller, контроллер сети радиодоступа. По сути выступает в той же роли, что BSC в GERAN.

NodeB

NodeB, базовая станция в UMTS. Аналог BTS в GSM.

В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).

Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.

Также уже есть идеи для ряда статей на основе вопросов, вызвавших интерес, в комментариях к статьям по телекоммуникациям, пока не буду раскрывать интригу — задавайте интересные вопросы — будут интересные статьи! 😉

UPD: в комментариях отписались эксперты в своих областях, что очень интересно почитать:
1. Ветка про ПО, устанавливаемом на оборудовании;
2. Ветка про отличия наших (СНГшных) сетей и сетей в Европе/США/Азии;
3. Комментрии от пользователя DeSh с поправлениями и уточнениями: тыц, тыц.
Да и вообще в комментариях довольно много всего интересного всплыло помимо выделенных мной комментариев.

Источник

«Физиология» и «анатомия» цифровой связи стандарта GSM

Цифровые сотовые сети стали вторым поколением таких подвижных систем связи. Переход на технику второго поколения позволил использовать ряд новых решений, в том числе более эффективные модели повторного использования частот, временное разделение каналов между собой, разнесение во времени процессов передачи и приема при дуплексной связи, эффективные методы борьбы с замираниями и искажениями сигналов, эффективные низкоскоростные речевые кодеки с шифрованием передаваемых сообщений для ведения кодированной передачи, более эффективные методы модуляции и интеграцию услуг телефонной связи с передачей данных, и другими услугами подвижной связи.

Технология CDMA (www.qualcomm.com) обеспечивает высокое качество сигнала при снижении излучаемой мощности и уровня шумов. В результате можно добиться минимальной средней выходной мощности, значение которой в сотни раз меньшее значений выходной мощности других, используемых в настоящее время стандартов. Это позволяет уменьшить воздействие на организм человека и увеличить продолжительность бесперебойной работы без подзарядки аккумулятора. Так, излучаемая мобильными аппаратами средняя мощность в сотовых системах CDMA составляет менее 10 мВт, что на порядок ниже мощности, требуемой в системах с временным разделением каналов TDMA. Эффективное использование радиочастотного диапазона с возможностью многократного использования одних тех же частот в сети (высокая спектральная эффективность) увеличивает емкость CDMA в 10-20 раз по сравнению с аналоговыми системами и в 3-6 раз превышает плотность других цифровых систем. Это способствует применению механизма контроля мощности и речевой активности, что, в свою очередь, уменьшает взаимные помехи, влияющие на емкость системы и другие факторы, а также позволяет обойти проблему блокировки канала в связи с большой нагрузкой. Соответственно CDMA обеспечивает меньшую задержку в передаче голосового сообщения, чем другие системы подвижной связи, поэтому не требуется уделять повышенное внимание растягиванию задержки сигнала и усугублению эффекта Доплера. Кроме этого, проблема многолучевого распространения эффективно решается на уровне коррекции ошибок. Наконец, плавный переход между сотами (или секторами в пределах одной соты) позволяет осуществлять «мягкий» переход от одной соты к другой, в отличие от TDMA, где такой переход происходит скачкообразно, что приводит к «жесткому», но очень короткому временному разрыву соединения.

КОНЦЕПЦИИ ЦИФРОВЫХ СИСТЕМ СВЯЗИ

На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Максимальная мощность излучения подвижного аппарата в зависимости от его назначения (автомобильный постоянный или переносный, носимый или карманный) может изменяться в пределах 0.8-20 Вт (соответственно 29-43 дБм). В качестве примера в таблице приводятся классы станций и абонентских устройств по применяемой мощности, принятые в системе GSM-900.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

«ФИЗИОЛОГИЯ»

Важнейшими причинами повышенного затухания сигналов являются теневые зоны, создаваемые зданиями или естественными возвышенностями на местности. Исследования условий применения подвижной радиосвязи в городах показали, что даже на очень близких расстояниях теневые зоны дают затухание до 20дБ. Другой важной причиной затухания является листва деревьев. Например, на частоте 836МГц в летнее время, когда деревья покрыты листвой, уровень принимаемого сигнала оказывается приблизительно на 10дБ ниже, чем в том же месте зимой, при отсутствии листьев. Замирания сигналов от теневых зон иногда называют медленными с точки зрения условий их приема в движении при пересечении такой зоны.

Растягивание задержки сигнала получается из-за того, что сигнал, проходящий по нескольким независимым путям разной протяженности, принимается несколько раз. Поэтому повторяющийся импульс может выйти за пределы отведенного для него интервала времени и исказить следующий символ. Искажения, возникающие за счет растянутой задержки, называются межсимвольной интерференцией. При небольших расстояниях растянутая задержка не опасна, но если соту окружают горы, задержка может растянуться на многие микросекунды (иногда 50-100 мкс).

Релеевские замирания вызываются случайными фазами, с которыми поступают отраженные сигналы. Если, например, прямой и отраженный сигналы принимаются и противофазе (со сдвигом фазы на 180°), то суммарный сигнал может быть ослаблен почти до нуля. Релеевские замирания для данного передатчика и заданной частоты представляют собой нечто вроде амплитудных «провалов», имеющих разную глубину и распределенных случайным образом. В этом случае при стационарном приемнике избежать замираний можно просто переставив антенну. При движении же транспортного средства такие «провалы» проходятся ежесекундно тысячами, отчего происходящие при этом замирания называются быстрыми.

Эффект Доплера проявляется при движении приемника относительно передатчика и состоит в изменении частоты принимаемого колебания. Подобно тому, как тон шума движущегося поезда или автомобиля кажется неподвижному наблюдателю несколько выше при приближении транспортного средства и несколько ниже при его удалении, частота радиопередачи смещается при движении приемопередатчика. Более того, при многолучевом распространении сигнала отдельные лучи могут давать смещение частоты в ту или другую сторону одновременно. В результате, за счет эффекта Доплера получается случайная частотная модуляция передаваемого сигнала подобно тому, как за счет релеевских замираний происходит случайная амплитудная модуляция. Таким образом, в целом многолучевое распространение создает большие трудности в организации сотовой связи, в особенности для подвижных абонентов, что связано с медленными и быстрыми замираниями амплитуды сигнала в движущемся приемнике. Преодолеть эти трудности удалось с помощью цифровой техники, которая позволила создать новые методы кодирования, модуляции и выравнивания характеристик каналов.

«АНАТОМИЯ»

Передача данных осуществляется по радиоканалам. Сеть GSM работает в диапазонах частот 900 или 1800 МГц. Более конкретно, например, в случае рассмотрения диапазона 900МГц подвижной абонентский аппарат передает на одной из частот, лежащих в диапазоне 890-915 МГц, а принимает на частоте, лежащей в диапазоне 935-960 МГц. Для других частот принцип тот же, изменяются только численные характеристики.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7), или восемь канальных интервалов.

Система с разделением частот (FDMA) позволяет получить 8 каналов по 25кГц, которые, в свою очередь, разделяются по принципу системы с разделением времени (TDMA) еще на 8 каналов. В GSM используется GMSK-модуляция, а несущая частота изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Требования к характеристикам стандартного импульса описываются в виде нормативного шаблона изменения мощности излучения во времени. Процессы включения и выключения импульса, которые сопровождаются изменением мощности на 70дБ, должны укладываться в промежуток времени длительностью всего 28мкс, а рабочее время, в течение которого передаются 147 двоичных разрядов, составляет 542.8мкс. Значения мощности передачи, указанные в таблице ранее, относятся именно к мощности импульса. Средняя же мощность передатчика оказывается в восемь раз меньше, так как 7/8 времени передатчик не излучает.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Последовательность импульсов образует физический канал передачи, который характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, существует еще ряд каналов, передающих сигналы управления. Реализация таких каналов и их работа требуют четкого управления, которое реализуется программными средствами.

GSM И КОМПЬЮТЕР

Поскольку эта тема выходит за рамки настоящей статьи, однако очень интересна и актуальна, то в нескольких словах на самом простейшем уровне, думается, стоит ее коснуться.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Слой соединения GSM непосредственно с обычной телефонной сетью поддерживает протоколы передачи данных в V.21, V.22, V.22bis, V.23, V.26ter, V.32 и протокол коррекции ошибок и сжатия данных MNP5. Поскольку данные по сети GSM передаются в цифровом виде, а модем на другом конце обычной коммутируемой линии работает только с аналоговыми сигналами, адаптер, рассматриваемый в первом примере, формирует такую последовательность данных, которая воспринимается модемом как обычные телефонные сигналы, в том числе несущая сигнала «занято» и т.д. Как правило, адаптер требует стандартных модемных установок: 8N1, скорость 2400, 4800 или 9600 bps. В случае же применения ИК-порта такие «преобразования» происходят уже внутри самой трубки.

Источник

Стандарты и поколения сотовой связи.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

США в городах: Хьюстоне, Индианаполисе, Лос-Анджелесе и Сакраменто

Южной Корее в различных крупных городах, а также в Сеуле.

Швейцарии – 54 города.

Германии в нескольких городах: Бонне и Берлине.

Поколения сотовой связи — это набор функциональных возможностей работы сети в рамках определенных стандартов, включая в себя: регистрацию абонента, передачу информации, шифрование, роуминг, а также набор различных услуг, предоставляемых абоненту. И уже в каждое поколение входят различные стандарты, которые с каждым поколением совершенствуются.
Так какой стандарт связи лучше? Сейчас разберемся!

Эти стандарты сотовой связи разделяются на 2 типа:

Цифровые – Все остальные стандарты мобильной связи (2G, 3G, 4G, 5G).

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Рабочая частота (мГц):

Первое поколение – 1G.

Первое поколение имело свои недостатки, а именно:

Отсутствие какого-либо шифрования.

Была возможность прослушивания голосовых вызовов.

Проблемы осуществления роуминга.

Большой вес и стоимость абонентских терминалов.

Полное отсутствие эффективных методов борьбы с замиранием сигнала, даже при передвижении абонента.

Стандарты сотовой связи – 2G.

Основные преимущества в сравнении с 1G:

Высокая емкость сети.

Стала возможна передачи данных.

Куда более лучшая помехоустойчивость.

Возможность создания роуминга.

Вес и стоимость абонентских терминалов стала меньше.

Для усиления голосовой связи на частоте 900 МГц, мы рекомендуем следующие готовые комплекты:

Выбирать данные комплекты, мы настоятельно рекомендуем по необходимой мощности усиления, а также силе входного сигнала.

Стандарты связи 3G.

Преимущество поколения 3G над прошлым:

Мобильная связь в третьем поколении строится на пакетной передаче данных. Данная сеть позволяет как устраивать видеоконференции, так и просматривать кино, видео и другой контент на любом мобильном устройстве.
В сети третьего поколения, есть одно весьма важное преимущество это улучшенная защита от обрывов мобильной связи при движении абонента. По мере удаления от одной вышки сотового оператора его начинает подхватывать сразу другая станция. Она начинает передавать все больше информации, в то время как предыдущая станция все меньше и меньше, и это продолжается до тех пор, пока клиент вовсе не покинет зону ее обслуживания. При-качественном покрытии сети и вовсе сводиться к минимуму шанс обрыва связи при таком перехвате.

Если вам необходимо усилить сигнал 3G или 4G, то вам отлично подойдут эти 2 комплекта в зависимости от необходимой мощности усиления сигнала:

Так же, можете выбрать комплект для усиления мобильного интернета из нашего каталога:

Стандарт, который обеспечивает для неподвижных объектов скорость передачи данных до 2048 кбит/с. для пользователей со скоростью передвижения не более 3км/ч скорость может достигать примерно до 384 кбит/с, а для абонентов, которые перемещаются со скоростью до 120 км/ч – 144 кбит/с.

Стандарты мобильной связи 4G.

LTE это стандарт беспроводной передачи данных, а также является развитием стандартов GSM/UMTS. Целью этого нового стандарта было увлечение пропускной способности и скорости передачи данных с использованием нового метода цифровой обработки сигнала, и модуляции, которые были разработаны на рубеже тысячелетий. Так же еще одной целью было упростить всю архитектуру сетей, основанных на IP, при этом в разы уменьшить задержку при передаче данных в мобильной сети.

LTE Advanced это главное улучшение стандарта сети LTE. Эта технология получила заявленную скорость до 1 Гбит/с у неподвижных абонентов и 300 Мбит/с у передвижных.

Сотовая связь нового поколения – 5G.

какая модуляция используется в сотовой связи. Смотреть фото какая модуляция используется в сотовой связи. Смотреть картинку какая модуляция используется в сотовой связи. Картинка про какая модуляция используется в сотовой связи. Фото какая модуляция используется в сотовой связи

Эта сотовая связь нового поколения, должна обеспечивать куда большую пропускную способность в сравнении с 4G, имеет малую задержку, скорость передачи данных в 1—2 Гбит/с, более экономный и меньший расход батареи устройства. 5G функционирует на куда больших частотах чем прошлое поколение и благодаря этому имеет маленький радиус покрытия – 200-300 метров.

Какие стандарты связи поддерживают российские операторы?

Стандарты и операторы сотовой связи в России находятся в частотах, которые указаны в таблице ниже:

Российский операторYota, Мегафон, Билайн.
МТС, Теле2
Yota, Мегафон,
МТС, Билайн
Yota, Мегафон,
МТС, Билайн, Теле2(СПб)
Yota, Мегафон,
МТС, Билайн, Теле2
Yota, Мегафон,
МТС, Билайн,Теле2
Стандарт связи.4G2G,3G2G,3G,4G3G4G
Частота (мГц)800900180021002600

Какой стандарт мобильной связи лучше?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *